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Abstract 

Porang (Amorphophallus muelleri) reproduces vegetatively using the bulbil, harvested 

during complete dormancy and spontaneous petiole detachment. However, the bulbils can 

be infected by fungi under certain harvesting and storage conditions, giving rise to non-

uniform seed quality, and decreased plant growth and crop yields. This study aimed to 

develop a non-destructive technique for detecting infected and non-infected bulbils of 

porang using visible-near infrared (VIS-NIR). Additionally, 90 samples were used and 

measured five times in various conditions involving a calibrated set of spectra ranging 

from 450 – 950 nm and a binary label as the predictor (X) and criterion (Y), respectively, 

due to the qualitative nature of the data. The bulbil was determined quantitatively using 

VIS-NIR spectroscopy involving Principal Component Analysis (PCA), Partial Least 

Squares (PLS), Partial Least Squares-Discriminant Analysis (PLS-DA), and various pre-

processing data. A PCA model was used to accurately determine the variance using two 

principal components (PC), including PLS and PLS-DA models. The PLS model was used 

to calculate the variance with accuracy and RMSE of 97.65% and 7.67%, respectively, 

while the variance was calculated with 100% accuracy using the PLS-DA model on all pre

-processed data. Therefore, the narrow spectrum ranging between 450 and 950 nm enabled 

the implementation of low-cost assays, such as visible near-infrared spectroscopy, and the 

rapid detection of harmful contaminants during the chemical studies of fungal-infected 

bulbils. 

1. Introduction 

Porang (Amorphophallus muelleri) is a bulbous plant 

from the Araceae family. It produces a bulb and leaf 

tubers in its branching leaf stalks, used for vegetative 

propagation (Sari and Suhartati et al., 2015; Hidayah et 

al., 2018). The cultivation of Porang is essential due to 

its high glucomannan content, which serves as a valuable 

export commodity with numerous industrial applications. 

Subsequently, Porang products are exported in various 

forms, such as dried chips and flour, to specific regions 

in Asia, Australia, and several other countries in the 

European Union (Harmayani et al., 2014; Yanuriati et 

al., 2017). 

Porang cultivation requires intensive management, 

including land preparation for seed planting and 

practices involving plant maintenance and tuber 

harvesting, which are well described in the Cultivation 

Operational Standard developed by the Ministry of 

Agriculture of the Republic of Indonesia (Soedarjo, 

2020). However, there are risks associated with porang 

farming, such as disease infestation, specifically on the 

bulbil. The majority of Porang diseases are caused by 

fungi, such as Sclerotium rolfsii, Phytophthora 

colocasiae, Fusarium solani, Fusarium oxysporum, and 

Botrytis cinerea (Sakaroni et al., 2019; Soedarjo and 

Djufry, 2021). Porang trees produce new bulbils during 

their dormancy, which fall naturally around the mother 

plant as vegetative seeds (Utami, 2021) and are typically 

stored at room temperature before vegetative 

propagation. However, certain factors, such as high-

water content, warm temperatures, and high humidity, 

can increase the spread of unexpected undetectable 

infections in newly fallen bulbils. Infections directly 

affect the quality of the bulbil, plant growth, and crop 

yield (Aini et al., 2020; Soedarjo and Djufry, 2021). 

Several molecular approaches are frequently used in 

disease identification procedures, such as pathogenicity 

testing, ELISA (enzyme-linked immunosorbent assay), 

and RT-PCR (reverse transcriptase-polymerase chain 
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reaction) (Babu et al., 2011; Aini et al., 2020). These 

methods require DNA sequencing, which is expensive, 

time-consuming, sophisticated, and destructive. 

Subsequently, disease-related concerns motivate efforts 

to examine young plant seeds to detect disease 

development in its early stages. The most suitable 

method to detect diseases is NIRS technology, a non-

invasive, non-destructive, and rapid technique that does 

not require complex sample preparation. According to 

Canonical discriminant analysis, near-infrared 

spectroscopy at a range of 900 – 2600 nm has been 

successfully used to detect zebra chip disease in potatoes 

at an early stage, with an overall classification accuracy 

of 97.25 – 98.35% (Liang et al., 2018). Furthermore, 

visible-near infrared (VIS-NIR) has been used to detect 

black spots on potatoes, with a correct classification rate 

of over 94% based on Partial Least Squares-Discriminant 

Analysis (PLS-DA) (López-Maestresalas et al., 2016). 

The early detection of frog skin disease was also 

detected in cassava, with an accuracy greater than 80%, 

achieved through High Dimensional Discriminant 

Analysis and Partial Least Squares (PLS) methods 

(Freitas et al., 2020). 

Another method employed in the early detection of 

symptoms involves using near-infrared spectroscopy 

(NIRS), an iterative and indirect procedure. The NIRS 

method could determine the light-reflected spectrum 

based on the plant species, its internal characteristics, 

and biochemical activity. The progression of an epidemic 

involves metabolic and physical changes caused by 

pathogens, which can affect optical absorption and cause 

variations in reflectance (Freitas et al., 2020). Therefore, 

this study aimed to investigate the rapid detection of 

fungi using VIS-NIR in porang bulbils, which caused a 

non-uniform quality in the plant. The study procedures 

included the determination of the wavelength associated 

with the fungal-infected bulbils, classifying the non-

infected bulbils as normal porang seeds, comparing the 

spectral pattern, and developing a classification model to 

identify non-infected and infected bulbils. 

 

2. Materials and methods 

2.1 Sample preparation 

The study included ninety samples, classified into 

infected and non-infected seeds. The porang bulbils were 

harvested during the last quarter of the tree's vegetative 

phase and stored for approximately one month before use 

with initial moisture content, weight, and area of 75% 

(wet basis), 5.00 g, and 210 cm2, respectively. 

2.2 Spectra acquisitions 

Four hundred fifty reflectance spectra (350 – 1000 

nm) were obtained from 90 samples, measured five times 

in different positions using a VIS-NIR spectrometer 

(Flame T-VIS-NIR Ocean Optics) and a spectra 

acquisition setup, as shown in Figures 1 and 2. The 

spectrum was measured using a fiber-optic probe 

(QR400-7-VIS-NIR Ocean Optics) and a tungsten 

halogen lamp (350 – 2400 nm, HL-2000-HP-FHSA 

Ocean Optics). The spectra were collected at a distance 

of 0.5 cm between the sample and the probe. An average 

of 100 scans and an integration time of 100 ms were 

used to collect spectra in a boxcar width of 1. According 

to previous studies, a distance of 0 between the sample 

and the probe produces the worst model performance 

since a greater distance between the sample and the 

probe can reduce the energy used before it reaches the 

samples (Pahlawan et al., 2021). Subsequently, the white 

reference was measured with a ceramic diffuse 

reflectance standard (WS-1, Ocean Optics, USA) 

during the dark reference with a blocked light source. 

The measuring instruments were re-calibrated after the 

successive assay of ten samples.  

2.3 Multivariate analysis 

All spectral data were compiled, and only spectra 

within the 450 – 950 nm range were used to minimize 

noise, which was finally resolved using MS Excel® at 

the preliminary stage. The spectral wavelength between 

450 – 950 nm was inputted into the Unscrambler® X 

software application (CAMO, Oslo, Norway). The raw 

spectra and pre-processed data are processed to improve 

model performance using baseline correction, the 

Standard Normal Variate (SNV), De-trending, and 

Multiple Scatter Correction (MSC) methods. The 

Figure 1. Infected and non-infected Amorphophallus muelleri 

bulbil with five different positions. 

Figure 2. Spectra acquisition setup. 
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samples were divided into two groups based 

on calibration (3/4 data or 270 spectra) and prediction 

(1/4 data or 180 spectra). The analytical methods used in 

this study were Principal Component Analysis (PCA), 

PLS, and PLS-DA. PCA is an unsupervised method that 

can reduce dimension, recognize patterns, and identify 

outliers, while PLS is a supervised method for 

developing a quantitative model. The sample was binary 

labelled based on the fungal infection to develop a 

quantitative parameter (non-infected and infected seeds 

labelled as 1 and 0, respectively). The calibration set was 

used to develop a PLS calibration model using 

the spectra as the predictor (X) and the binary label as 

the criterion (Y). The proposed models were validated 

using prediction sets. PLS-DA is an extension of PLS 

that involves the conversion of the PLS value from the 

decimal form into a binary label, which is then analyzed 

using the specified threshold value, as shown in Table 

1 (Szyman'ska et al., 2012). The predicted PLS values 

greater than 0.5 were rounded to 1, while values less than 

0.5 were rounded to 0.  

2.4 Evaluation of calibration and validation results 

PCA involves the development of axes by linearly 

combining spectral variables known as principal 

components (PC), data predictors based on the most 

significant variance. Therefore, an A-line containing 

more fundamental components will have a higher 

variance and more data points. Another common 

technique used in revealing hidden patterns in spectral 

data was the CA (Wu et al., 2020). 

The coefficient of determination (R2) and Root Mean 

Square Error was used to examine the PLS calibration 

and validation findings (RMSE). The coefficient of 

determination represented the independent contribution 

to the dependent variable. Subsequently, the RMSE was 

calculated using the estimated and actual values based on 

the highest R2 and lowest RMSE to yield a reliable 

model (Tamburini et al., 2016; Masithoh et al., 2020).  

The calibration and validation results of PLS-DA 

were evaluated using Model Accuracy (Acc) and Model 

Reliability (Rel). PLS-DA consisted of PLS regression 

values and a dependent variable y representing the class 

membership, where the best model had the highest Acc 

and Rel values (Pahlawan et al., 2021). PLS-DA was an 

excellent method for determining the linear correlation 

between spectral and categorical variables in numeric 

form. Specifically, the PLS-DA algorithm turns spectral 

data into latent regressors that retain variation 

information while optimizing correlation with the 

categorical variable in contrast to PCA (Wu et al., 2020). 

The following equation can be used to calculate the R2, 

RMSE, Acc, and Rel values. 

3. Results and discussion 

3.1 Visible-near infrared spectroscopy of 

Amorphophallus muelleri bulbil  

The VIS-NIR raw spectrum of the infected and 

uninfected bulbils is shown in Figure 3, and the 

reflectance graph shows some of the content found in the 

porang bulbil. The use of VIS-NIR and chemometric 

methods for early detection is a prominent technique 

used in the non-destructive analysis of various biological 

materials, with the advantage of greater sensitivity than 

using only the naked eye (Azmi et al., 2021). VIS-NIR 

can detect fungi and identify infected and non-infected 

seeds (del Fiore et al., 2010; Shahin et al., 2014). The 

spectra showed similar characteristics between 450 and 

550 nm, corresponding to chlorophyll, carotenoid, and 

anthocyanin pigments (Shahin et al., 2014; Masithoh et 

al., 2021). Also, there was a correlation between the 

variation in the spectrum and the chlorophyll content at 

the peak of the wavelength ranging between 640-700 

nm (Cortés et al., 2016; Pahlawan et al., 2021). There 

was an increase in the spectrum value between 700 and 

950 nm, as well as a third or fourth overtone of the -CH 

and -OH stretching, which corresponded to the 

absorption area of water and sugar groups (Shahin et al., 

2014; Phetpan et al., 2018; Wati et al., 2021).  

Fungal infections caused a lower reflectance 

 (1) 

 (2) 

 (3) 

 (4) 

Case 
Non-infected 

Class Parameter 
True  Predicted 

A 1 0.55 1 True non-infected (TN) 

B 1 0.49 0 False infected (FI) 

C 0 0.37 0 True infected (TI) 

D 0 0.67 1 False non-infected (FN) 

Table 1. Discriminant analysis parameter of Amorphophallus 

muelleri bulbil. 

Figure 3. Visible-near infrared reflectance spectra of infected 

and non-infected bulbil 
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spectrum in bulbils than in non-infected bulbils. The VIS

-NIR data retrieval method used in this study 

detected fungal infections at a 450 – 1000 nm 

wavelength range, consistent with a previous study 

by Shahin et al. (2014). The spectra of 450–950 nm and 

1000–2000 nm were used to evaluate the growth rates 

and predict fungal damage on wheat germ, 

specifically Fusarium species. According to previous 

reports, fungal damage primarily affects the intensity and 

slope changes in the 450 – 950 nm spectral range. 

According to Del Fiore et al. (2010), there were 

spectrum changes caused by Aspergillus on artificially 

inoculated maize kernels in 400 – 1000 nm spectral 

region. 

3.2 Calibration and validation using the principal 

component analysis method 

The qualitative analysis of VIS-NIR using PCA was 

conducted to identify non-infected and infected porang 

bulbils. It was observed that there was an increased 

absorbance in the spectral features towards the near-

infrared visible region of 550 nm in the infected bulbils, 

while the non-infected bulbils showed a decreased 

absorbance. The spectrum intersection between 650 and 

750 nm is the most significant classification feature, as 

shown in Figure 4. Del Fiore et al. (2010) reported using 

HSI on corn kernels inoculated with several species 

of Aspergillus at a 400–1000 nm wavelength. The results 

of PCA based on the Discriminant Analysis showed that 

fungal activity caused significant spectrum changes. The 

spectral characteristics of the fungus were implicated in 

the spectral difference between the contaminated and 

uncontaminated maize at wavelengths less than 700 nm. 

Furthermore, the wavelengths with the highest 

correlation values were 535 and 945 nm based on PCA's 

first three principal components, which showed A. flavus 

activities. 

Figure 5 shows the scores plot for the first two PC 

from PCA on the NIR spectra of porang bulbil. PCA 

explained 100% of the total variance, where PC1 and 

PC2 accounted for 97% and 3%, respectively. The non-

infected porang seeds were spread across quadrants 2, 3, 

and 4 in the graph. Quadrant 4 was mainly based on 

the positive and negative values of PC1 and PC2, 

respectively. In contrast, infected porang seeds tend to 

separate in quadrants 1, 2, and 3 of the graphs, 

where quadrant 1 was dominantly based on a negative 

value of PC1 and a positive value of PC2. Manual 

calculations were also performed based on the results of 

PCA plot scores by drawing the closest line separating 

infected and non-infected seeds. The manual calculation 

results showed that 1% of infected seeds fall into the non

-infected group, while 22% of non-infected seeds fall 

into the infected group. PCA showed the discriminative 

power of healthy and infected rice kernels for laboratory-

inoculated and field-inoculated rice kernels using NIR-

HSI with spectral variations of about 99.76%. The study 

concluded that PCA discrimination should be reserved 

for on-trend discrimination and substituted with a more 

precise quantitative analysis (Wu et al., 2020). 

3.3 Calibration and validation using partial least 

squares method 

Table 2 shows the calibration and validation results 

using the PLS technique. The most accurate prediction 

model can be determined using statistical 

indicators, such as R2, SEC, SEP, and root mean 

standard error (RMSEP) (Tamburini et al., 2016; 

Masithoh et al., 2020). The coefficient of determination 

(R2C) was about 100% after the De-trending pre-

processing, while the Root Mean Square Error (RMSE) 

was low. The R2C score for De-trending was 97.65%, 

indicating that this model can accurately 

identify infected and non-infected bulbils.  

Figure 6 shows the linear regression coefficient of 

PLS for wavelengths ranging from 450 – 940 nm, which 

involved irregular spectra, with  490, 660, and 715 nm 

peaks and valleys of 559 and 685 nm. The peak 

wavelength of 490 nm corresponded to the yellow colour 

of bulbils, which is associated with the beta-carotene 

content (López-Maestresalas et al., 2016). The presence 

of chlorophyll was detected by the peak at 640-700 nm 

(Cortés et al., 2016), while water absorption occurred at 

760 nm in the deep 720 – 1000 nm range (Min et al., 

Figure 4. Loadings plot of principal component analysis of 

infected and non-infected bulbil. 

Figure 5. Principal component analysis scores plot of infected 

and non-infected bulbil. 
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2006). Other studies successfully reported using the PLS 

regression model to detect nine classes of fungal 

infections in wheat grains at the VIS-NIR wavelength 

range of 450 – 900 nm (Shahin et al., 2014). However, 

pre-treatment with PLS based on normalization and SNV 

or mean centering can produce the lowest RMSE of less 

than 1 and 96% accuracy due to colour changes 

from fungal attacks. According to Chakraborty et al. 

(2021), the PLS model and VIS-NIR in the 400 – 1000 

nm spectral range produced good PLS results in the early 

detection of Aspergillus flavus in corn kernels, as well as 

predicting the actual content of aflatoxin B1 at R2C and 

R2V values of 0.873 and 0.820, respectively. 

The calibration and validation results were also 

graphically displayed in Figure 7. Binary discriminators 

were used to differentiate the two bulbil states, but the 

data was still inaccurate. The data obtained from the PLS 

model was converted to binary labels using PLS-DA 

since the results were in decimal values and 

unreliable when applied to categorical data. Therefore, 

PLS prediction values greater than 0.5 were labelled 1 

(non-infected seed), while those less than 0.5 were 

labelled 0 (infected seed). 

3.4 Calibration and validation using the partial least 

squares-discriminant analysis method 

The calibration and validation results for the PLS-

DA method are shown in Table 3. The results showed 

that PLS-DA poses a linear constraint on the PLS 

regression, where the regression model visualizes the 

predicted (y) and observed (x) variables as projections 

(Kalogiouri, 2020). Subsequently, matrix analysis can be 

used to evaluate the performance of the PLS-DA model 

in determining numerical superiority based on accuracy, 

sensitivity, parameters, and error rate (da Conceição et 

al., 2021). Linear Discriminant Analysis (LDA) was 

Pre-processing 
Techniques 

Calibration Validation Prediction 

R²C RMSEC R²V RMSEV R²P RMSEP 

Ori 90.99% 15.01% 88.92% 16.70% 90.93% 15.06% 

De Trend 97.65% 7.67% 95.33% 10.85% 94.79% 11.41% 

SNV 94.85% 11.34% 92.20% 14.01% 91.72% 14.39% 

MSC 95.10% 11.07% 92.57% 13.68% 91.86% 14.27% 

Baseline 93.77% 12.47% 91.85% 14.33% 89.83% 15.95% 

Area N 93.43% 12.82% 91.52% 14.61% 90.95% 15.04% 

UV N 90.28% 15.59% 88.28% 17.18% 88.26% 17.13% 

Mean N 93.43% 12.82% 91.82% 14.61% 90.95% 15.04% 

Max N 92.68% 13.53% 90.99% 15.07% 87.67% 17.56% 

Range N 91.78% 14.33% 90.15% 15.75% 84.74% 19.53% 

Table 2. PLS model performances. 

Figure 6. Regression coefficients (BW) of PLS. 

Pre-processing 
Techniques 

Calibration Validation Prediction 

Acc Rel Acc Rel Acc Rel 

Ori 100% 100% 100% 100% 99% 99% 

De Trend 100% 100% 100% 100% 99% 99% 

SNV 100% 100% 100% 100% 100% 100% 

MSC 100% 100% 100% 100% 100% 100% 

Baseline 100% 100% 100% 99% 99% 99% 

Area N 100% 100% 100% 100% 99% 99% 

UV N 100% 99% 99% 99% 99% 98% 

Mean N 100% 100% 100% 100% 99% 99% 

Max N 100% 100% 100% 100% 99% 99% 

Range N 100% 100% 100% 100% 99% 99% 

Table 3. PLS-DA model performances. 

Figure 7. Classification of infected and non-infected bulbil 

using the PLS model. 
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primarily used to establish the relationship between 

the X matrix of predictors and the Y matrix of indicators 

to determine class membership based on Canonical 

Correlation Analysis (CCA). However, CCA results 

were substituted for PLS results to form the PLS-DA 

since the study aimed to examine highly correlated 

predictors. The predicted values were not absolute in 

binary form and did not correspond with the entire real 

axis, limiting their use in class membership's direct 

interpretation (Stocchero et al., 2021).  

The data for infected porang bulbil was plotted 

against non-infected ones using a binary label in Figure 

8. The infection rates were not uniformly distributed 

since the bulbils used were infected in the field and 

stored. Most bulbils had an infection rate of less than or 

equal to zero, and only a few had a high infection rate. 

However, the PLS-DA model accurately and reliably 

identified the infected and non-infected porang seeds on 

all original spectra and pre-processed data at 98–100% 

accuracy and reliability. Another study determined the 

presence of fusarium damage in wheat kernels at 90% 

accuracy and 9% false positives. The spectral region 

between 500 and 700 nm can also detect damage with 

mild to severe symptoms (Shahin, 2012). The PLS-DA 

model was used in another study to detect A. flavus on 

corn kernels early at a maximum PLS-DA accuracy of 

94.7% using SNV pre-processing (Chakraborty et al., 

2021). 
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