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Abstract 

COVID-19 pandemic encourages the utilization of local food sources to ensure food 

availability. Busil (Xanthosoma sagittifolium) was readily available and affordable in 

Banjarnegara Regency in the Province of Central Java in Indonesia. However, the busil 

starch utilization was still rare due to the low functional properties of the native busil 

starch. The objective of this study was to explore busil starch physicochemical 

characterization enhancement after microwave irradiation treatment, especially on the 

stability of heat processing. This research was conducted in two steps. First, microwave 

treatment (with a variation of energy and irradiation time) of native busil starch (NBS), 

and the second was modified busil starch (MBS) physicochemical characterization. A rise 

in amylose was observed on MBS. SEM analysis was shown MBS granules are 

breakdown. Through viscosity, final viscosity, setback viscosity, peak time, and the 

pasting temperature of MBS generally were increased. Meanwhile, peak viscosity and 

breakdown viscosity of MBS was decreased. Thermal properties of MBS like onset (To), 

peak (Tp), and conclusion (Tc) temperatures were also increased. The degree of whiteness 

index (DW) of MBS was decreased. FTIR analysis has shown that microwave treatment 

did not cause functional group alteration. XRD analysis has also demonstrated no change 

in the diffraction pattern but a slight change in the crystallinity index. Generally, 

microwave treatment leads to MBS thermal stability and potentially broaden MBS 

utilization on food processing product.  

1. Introduction 

The COVID-19 pandemic condition makes people 

and goods mobility all over the world restricted. This 

condition encourages local food sources to ensure food 

availability as a part of the food security policy system. 

Busil (Xanthosoma sagittifolium), a local food source in 

Banjarnegara, Indonesia (Rudyatmi and Rahayu, 2014), 

locally had long been used as a daily snack food (Hakim 

et al., 2021). Many know Xanthosoma spp. of names in 

different countries, including taro in Cameroon, yautia 

in the Dominican Republic, malanga in Cuba, and 

cocoyam in Ghana and other South Africa. Although it 

can be found in many countries and known by various 

names, it is originally from northern South America and 

Asia (Calle et al., 2019). From its location of growth, the 

name of busil will be used throughout this research. 

Traditionally it was eaten as steamed and fried busil. 

This traditional processing is not much different 

(Olayemi et al., 2008; Odeku, 2013; Adeyanju et al., 

2019; Coronell-Tovar et al., 2019). Although busil was 

readily available and affordable, busil utilization, mainly 

as native busil starch (Figure 1), was still low. Generally, 

low utilization of native starches due to deficiencies 

properties that make native starch inappropriate as a food 

ingredient, like tight peak viscosity, low thermal process 

tolerance, form a viscous paste when processed, and 

unstable gels when cooled or during storage (Deka and 

Sit, 2016) 

Figure 1. Native busil starch 
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Starch modification is a method that can be taken to 

improve native starch properties. Physical modification 

is the most studied starch modification method in the last 

decade, mainly due to its simplicity and safety 

(Ashogbon, 2018). Microwave treatment is one of them 

that has special attention due to its various advantages, 

including homogenous heating operation, higher heating 

rates, precise process control, ease to use, environmental-

friendly energy processes, economist, and rapidity 

(Anderson and Guraya, 2006; Agriculture et al., 2012; 

Fan et al., 2014; Lewicka et al., 2015; Chizoba Ekezie et 

al., 2017; Li et al., 2020; Li, Hu, Wang et al., 2019; Lu 

et al., 2020). Microwave irradiation has been 

considerably used for starch modification due to the 

dielectric heating and electromagnetic polarization of 

hydroxyl groups of structured water and starch (Zhong et 

al., 2019). Recently, no research has been published on 

the physicochemical property changes of busil starch 

after microwave irradiation treatment. This study was 

focused on exploring busil starch physicochemical 

properties characterization after microwave irradiation 

and the effect of different energy and time. This 

information is essential to find the best microwave 

modification method and recommended utilization of 

microwaved busil starch.  

 

2. Materials and methods 

2.1 Materials  

A local variety of Cocoyam (Xanthosoma 

sagittifolium) or busil was obtained from the farmer in 

Kali Bening District, Banjarnegara Regency, Central 

Java, Indonesia, at 11 months of age. Busil that has good 

quality and without physical defects were selected as 

sample research. Analytical grade reagents were used in 

this research. 

2.2 Starch isolation 

The wet extraction method was used to obtain busil 

starch. Busil was peeled, washed, and then grated. The 

grated material was then collected, added with water 

(1:3), and mixed manually until form a homogenous 

busil slurry. The filtrate was collected by busil slurry 

filtration using a clean filter cloth. Overnight 

sedimentation was done to obtain busil starch on the 

bottom of the container. Busil starch was decanted, dried 

on the cabinet dryer at 50°C overnight, grounded, and 

then sieved through 100 mesh sieve. For further 

treatment and analysis, native busil starch was packed 

and kept in a sealed container. 

2.3 Microwave treatment 

Native busil starches (NBS) were adjusted to 25% 

(wet basis) moisture content by adding appropriate 

distilled water. Starches were placed into a sealed 

container overnight to balance the moisture content 

before treatment. Microwave energy was used on 0.5 1.0 

and 1.5 W/g (labelled with A, B, C respectively) and was 

carried out for 3, 5, and 7 mins (labelled by 1, 2, and 3 

respectively). After microwave treatment was finished, 

each sample (next called modified busil starch/MBS) 

was dried on the cabinet dryer (50oC for 12 hrs), milled 

using a conventional blender, and sieved (100 mesh). 

The MBS was packed individually and kept in dry places 

for further analysis. 

2.4 Amylose and amylopectin content. 

NBS and MBS amylose and amylopectin sample 

content were analyzed according to AOAC standard 

method (Horwitz, 2010). Data is displayed on a % dry 

basis. 

2.5 Pasting properties 

Pasting properties were determined using a Rapid 

Visco Analyzer (RVA 4500, Perten Instruments, 

Sweden) as described by (Ratnaningsih et al., 2020). 

NMB and MBS (3.5 g) samples were weighed into a 

sample container, and 25 g of distilled water was added. 

Starch slurries were held at 50°C for 1 min, heated to 95°

C at a rate of 6°C/min, held at 95°C for 5 mins, cooled to 

50°C at a rate of 6°C/min, and held at 50°C for 2 mins. 

The speed was 960 rpm for the first 10 s, then 160 rpm 

for the remainder of the experiment. 

2.6 Differential scanning calorimeter analyses 

DSC TA-60WS, Shimadzu, Japan, was used to 

evaluate the thermal properties of NBS and selected 

MBS. DSC analysis method adapted from (Ratnaningsih 

et al., 2020) with slight modification. The sample pan 

was filled with a starch sample (2 mg) and then added 

with 8 µL of distilled water. Another pan containing 

alumina powder (6 mg) was used as a reference. The 

sample and reference pan was heated at the rate of 10oC/

min from 30oC to 300oC. Onset temperature (To), peak 

temperature (Tp), and enthalpy of gelatinization (DH) 

were obtained. 

2.7 Colour 

Colour parameters were measured with Chroma 

Meter (Konica Minolta CR-400, Japan). There were L* 

(lightness), a* (redness to greenness), and b* 

(yellowness to blueness) parameters of NBS and MBS 

were observed. The colour analysis method was done as 

described by (Yanuriati et al., 2017). L*, a*, and b* 

values were then used to obtain the degree of whiteness 

(%DW) of NBS and MBS with the equation described 

by Ratnaningsih et al. (2020). 
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2.8 FT-IR Spectroscopy analysis 

The FT-IR spectra of NBS and selected MBS were 

obtained with IR Prestige-21 (Shimadzu Co., Japan) 

spectrometer described by (Ratnaningsih et al., 2020). 

Starch samples (2 mg) were dispersed in 200 mg of KBr 

(pellet procedure). Samples were analysed in the wave 

range of 4000–400 cm-1 at 25oC. All spectra were 

displayed using Origin 2016 software. 

2.9 X-ray diffraction studies 

XRD patterns from NBS and selected MBS were 

determined using Rigaku MiniFlex600 (Japan), operated 

at 40 kV and 30 mA with a scan rate of 4°C/min. The 

diffraction angle (2θ) observed ranged from 5° to 50°. 

All spectra were displayed using Origin 2016 software. 

2.10 Granule morphology and size 

The granule morphology of selected native and 

modified busil starch was determined by scanning 

electron microscopy (SEM) using Hitachi SU 3500 

(Japan). Starch samples were coated with gold-

palladium. The magnification, accelerating voltage, and 

other crucial technical observation data were displayed 

on the micrograph. The size distribution of selected 

native and modified busil starch granules was measured 

using a Horiba laser particle size analyzer (Horiba LA-

960, Japan). Water was used as a dispersing medium. 

The refractive index values used were 1.33. Dv (50) 

value was used as a mean size of sample starch. 

2.11 Data analysis 

Data were analyzed using IBM-SPSS software 

version 26 with the variance analysis method (ANOVA), 

followed by Duncan Test to detect differences. 

Significance was confirmed at P values < 0.05. 

  

3. Results and discussion 

3.1 Amylose and amylopectin content 

Amylose and amylopectin are significant 

constituents of starch that govern the characteristics and 

functionality of starch (Shah et al., 2016; Shevkani et al., 

2017; Biduski et al., 2018). A rise in amylose and a 

decrease in amylopectin content were observed (Table 

1). Both microwave energy and irradiation time variation 

treatment have shown an amylose parabolic trend line. 

Amylose content tends to increase at an initial condition, 

then decrease when both are being raised, and then 

would be increased again at the final state. Microwave 

power and irradiation time significantly take effect on 

amylose and amylopectin content. 

Generally, MBS showed higher amylose contents 

than NBS. This condition was also reported by (Deka 

and Sit, 2016; Mutlu et al., 2017) and is potentially due 

to amylopectin breakdown as stated by the previous 

researcher (Brasoveanu and Nemtanu, 2014; Deka and 

Sit, 2016; Li, Hu, Zheng et al., 2019; Oyeyinka et al., 

2019; Tao et al., 2020). MBS granules were heated 

homogenously and rapidly, making MBS absorb optimal 

microwave energy, which reacts with hydrogen bonding 

forces within busil starch granules and stimulates 

amylopectin chains breakdown and resulting in linear 

amylose chains (Brasoveanu and Nemtanu, 2014). The 

highest amylose content was reached by the B3 sample 

treated with 1 W/g microwave energy and irradiated for 

7 mins. As stated before, there was an amylose parabolic 

trend line. This condition is likely due to microwave 

treatment, which leads to amylopectin breakdown at the 

initial condition and amylose breakdown at the increased 

microwave energy and irradiation time. 

3.2 Pasting properties 

The pasting properties of NBS and MBS starch are 

shown in Table 2. Through viscosity, final viscosity, 

setback viscosity, peak time, and pasting temperature of 

MBS were generally increased. Meanwhile, peak 

viscosity and breakdown viscosity of MBS was 

decreased. This condition is in line with what was 

reported by (Brasoveanu and Nemtanu, 2014; Ashogbon 

and Oluwafemi, 2018; Arinola, 2019). MBS with high 

amylose content tended to have higher final viscosity and 

pasting temperature values. This condition could be due 

to greater hydrogen bonding interactions (Biduski et al., 

2018). MBS also has a higher peak time and setback 

viscosity value, which indicates that MBS was more 

stable in heat processing and storage. 

3.3 Thermal properties 

Thermal properties and % crystallinity from NBS 

and selected MBS sample were shown in Table 3. There 

was a linear correlation among pasting properties from 

 NBS A1 A2 A3 B1 B2 B3 C1 C2 C3 

Amylose (%) 15.15a 34.41i 29.24e 30.89h 29.67g 16.06b 34.57j 19.25c 27.91d 29.38f 

Amylopectin (%)  80.21i 58.61b 64.95e 58.71b 63.12b 77.43h 56.82a 74.41g 66.34f 64.57d 

Table 1. Amylose and amylopectin from native and modified busil starch 

Values with different superscripts within the same row are significantly different (p<0.05) among the variation. A, B and C is 

0.5, 1.0 and 1.5 W/g microwave energy, respectively. 1, 2 and 3 is the irradiation time at 3, 5 and 7 mins respectively. NBS: 

native busil starch. 
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RVA analysis with thermal properties from DSC 

analysis. Increased the onset (To), peak (Tp), and 

conclusion (Tc) gelatinization temperatures on MBS 

showed that microwave treatment could produce stable 

MBS during the heating process. This condition could be 

due to stronger interaction between more amylose and 

amylopectin components, requiring a higher temperature 

to break down the crystalline regions. Increased To of 

MBS also indicated the formation of long-chain double-

helical crystallites of amylose (Ratnaningsih et al., 

2020). Higher amounts of amylose will also decrease the 

energy for gelatinization (Shevkani et al., 2017) and % 

crystallinity. 

3.4 Colour properties 

The value of L*, a*, and b* colour parameters of 

NBS and MBS were shown in Table 4. Microwave 

treatment decrease %DW and L* value meanwhile 

increase a* and b* value. MBS %DW was about 85.60% 

to 86.44%. According to (Widowati et al., 1997), this 

value is still met with the Indonesian Industrial Standard 

for Starch (min 85%). Generally, MBS %DW values 

were lower than NBS. This condition could occur due 

heating process from microwave treatment, mainly due 

to the reduction in L* value because of the starch 

caramelization. Starch caramelization produces simple 

sugars by breaking down starch molecules that have a 

low L* value. These conditions are in line with those 

reported by (Barua, 2017; Kumar et al., 2020). 

3.5 FT-IR spectroscopy analysis 

As shown in Figure 2, microwave treatment does not 

cause the generation or disappearance of functional 

groups. NBS and MBS FTIR spectra have shown a 

similar pattern. This condition is in line with those 

reported by (Chen et al., 2015; Zeng et al., 2016; Han et 

al., 2020). A minor difference was observed in the O-H 

group peaks range of 3600–3000 cm−1, where MBS 

peaks were widened than NBS. This result indicated that 

hydrogen bonds might be formed on the MBS sample 

between starch and water molecules, as described by 

(Shah et al., 2016; Zeng et al., 2016; Wang et al., 2019). 

The changes in transmittance peak intensity in FTIR 

spectra showed the starch molecule's ability to absorb 

microwave energy and transform it into kinetic energy 

(Tao et al., 2020). 

3.6 XRD studies 

Same as FTIR spectra, XRD spectra of NBS and 

  NBS A1 A2 A3 B1 B2 B3 C1 C2 C3 

Peak visc. (cP) 6153 6001 6217 5722 5944 5788 5627 5852 5658 5799 

Trough visc. (cP) 3438 3485 3863 4027 3659 4027 4193 3954 4520 4382 

Breakdown visc. (cP) 2715 2516 2354 1695 2285 1761 1434 1898 1138 1417 

Final visc. (cP) 4748 5175 5788 6143 5501 6150 6802 6108 7222 7310 

Setback visc. (cP) 1310 1690 1925 2116 1842 2123 2609 2154 2702 2928 

Peak time (min) 7.1 8.3 8.2 8.5 8.5 8.5 8.3 8.4 8.5 8.4 

Pasting temp. (oC) 74.30 75.1 75.8 78.4 76.2 77.6 79.5 77.2 79.1 79.5 

Table 2. Pasting properties from native and modified busil starch 

A, B and C is 0.5, 1.0 and 1.5 W/g microwave energy, respectively. 1, 2 and 3 is the irradiation time at 3, 5 and 7 mins 

respectively. NBS: native busil starch. 

  To (oC) Tp (oC) Tc (oC) DH (J/g) % crystallinity 

NBS 69.39 74.45 80.41 11.09 11.54 

B1 70.32 75.47 78.35 4.24 13.76 

B2 71.44 77.05 88.14 15.18 12.62 

B3 74.44 78.50 79.96 2.45 12.48 

Table 3. Thermal properties and % crystallinity from native and modified busil starch 

A, B and C is 0.5, 1.0 and 1.5 W/g microwave energy, respectively. 1, 2 and 3 is the irradiation time at 3, 5 and 7 mins 

respectively. NBS: native busil starch. 

  NBS A1 A2 A3 B1 B2 B3 C1 C2 C3 

L* 89.53e 86.42a 86.55a 87.11c 86.89b 86.93b 87.28cd 87.41d 87.20c 87.12c 

a* 4.96bcd 5.01d 4.99d 4.99d 4.93bc 4.86a 4.97cd 4.92bc 4.91ab 4.86a 

b* -2.40a -1.30b -1.30b -1.24bcd -1.26bc -1.38b -1.03e -1.10de -1.05e -1.12cde 

%DW 88.17g 85.47a 85.60a 86.12cd 85.94b 85.99bc 86.31ef 86.44f 86.25de 86.19de 

Table 4. Colour properties from native and modified busil starch 

Values with different superscripts within the same row are significantly different (p<0.05) among the variation. A, B and C is 

0.5, 1.0 and 1.5 W/g microwave energy, respectively. 1, 2 and 3 is the irradiation time at 3, 5 and 7 mins respectively. NBS: 

native busil starch. 
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Figure 2. FTIR spectra of NBS and MBS after microwave irradiation at (a) different microwave energy and (b) different times. 

A, B and C is 0.5, 1.0 and 1.5 W/g microwave energy, respectively. 1, 2 and 3 is the irradiation time at 3, 5 and 7 mins 

respectively. NBS: native busil starch. 

Figure 3. XRD spectra of native busil starch (NBS) and modified busil starch on different microwave irradiation times (1, 2, 3) 

and on different microwave irradiation energy (A, B, C). A, B and C is 0.5, 1.0 and 1.5 W/g microwave energy, respectively. 1, 

2 and 3 is the irradiation time at 3, 5 and 7 mins respectively.  
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MBS (Figure 3) also have shown a similar pattern. All of 

XRD spectra have shown 2θ peak at 15°, 17°, 18°, and 

23°. That peaks are characteristic of the “A” type of 

XRD pattern, in line with (Moorthy, 2002). An “A” 

XRD pattern starch has more density at the helix 

structure. It shows double helix found, and amylopectin 

short-chain proportion is higher (Faridah, 2009). 

Although XRD patterns from NBS and MBS have 

demonstrated similar, % crystallinity tends to decrease 

when prolonged irradiation time, as shown in Table 3. 

This condition showed that microwave treatment could 

cause crystalline regions breakdown, loss of the double 

helices, and degradation of the MBS granules, as stated 

by (Han et al., 2020; Tao et al., 2020). On the other 

hand, % crystallinity of MBS was higher than NBS. It 

could be due to the rewinding of amylose-amylose and 

amylose-amylopectin chains to generate double helix 

chains and form a crystalline array as an effect of 

microwave irradiation, which is more ordered than that 

in NBS (Yang et al., 2017). 

3.7 Granule morphology 

Scanning electron micrographs of NBS and selected 

MBS (B3) granule morphology are shown in Figure 4. 

The NBS granule's shape tended to be oval or round with 

heterogonous size. This granules size diversity could 

occur due to the grating effect in the starch extraction 

method. The grafting method commonly produces 

heterogeneous starch granules but has maximal starch 

yield (Wanita, 2018). MBS granules looked more broken 

and became slightly bigger. MBS granule alteration 

could happen due to soaking and swelling. Previous 

research showed that microwave treatment, even for a 

shorter duration and lower power, proved effective in 

changing granule morphology (Agriculture et al., 2012). 

 

4. Conclusion  

Microwave treatment generally has some advantages 

to the busil starch. Microwave treatment could raise 

MBS amylose content, alter pasting, and thermal 

properties to be more stable on heat processing and 

storage, and also initiate granules breakdown that will 

enlarge the starch surface area. Meanwhile, microwave 

treatment also has a disadvantage in reducing the 

whiteness index of busil starch. However, this 

disadvantage can be ignored if MBS is used in the dark-

coloured product. Microwave treatment also did not 

change the busil starch functional group and busil starch 

diffraction pattern. There was only a slight change in the 

crystallinity index. This research suggests that 

microwave treatment effectively improves the 

physicochemical properties of modified busil 

(Xanthosoma sagittifolium) starch, with 1 W/g 

microwave energy and 7 mins of irradiation time is 

recommended for further product development. 
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