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Abstract 

Bivalve molluscs, comprising oysters and mussels, are important seafood products as they 

represent over 56% of marine and coastal production and account for 12% of the seafood 

trade with a value of over USD 34 billion dollars. Bivalve molluscs are increasingly 

popular among consumers because of their high nutritional value and are considered 

sustainable seafood products as they do not require feed inputs and can make a significant 

contribution to food security. As filter feeders, bivalve molluscs can accumulate 

microorganisms, and improper post-harvesting handling and storage procedures could 

support the growth of spoilage and pathogenic microorganisms, causing spoilage and 

potential safety issues. At the same time, there is an increasing demand by consumers for 

fresh and minimally processed foods. Therefore, understanding the microbial diversity of 

bivalve molluscs and methods to control microbial growth is of increasing research 

interest. This review highlighted the recent developments in the understanding of the 

microbial community of bivalve molluscs and the use of innovative technologies for the 

preservation and shelf-life extension of seafood.  

1. Introduction 

Seafood has been described as a sustainable source 

of protein for the growing world population (FAO, 

2020). According to the Food and Agricultural 

Organisation (FAO) data 2010-2015, marine bivalves' 

global production exceeds 15 million tonnes annually, 

making them an important food source (FAO, 2020). 

Bivalve molluscs represented 56.3% (17.3 million 

tonnes) of marine and coastal production valued at USD 

34.6 billion and accounted for 12% of seafood trade 

value in 2018 (FAO, 2020). As with other seafood, the 

production of bivalve molluscs has increased in the past 

decades from approximately 5 million tonnes in 1990 to 

17.3 million tonnes in 2018, primarily from aquaculture. 

In 2017, bivalve molluscs consumed at 2.6 kg per capita 

globally (FAO, 2020). Bivalve molluscs such as oysters 

and mussels are filter feeders and, therefore, accumulate 

microorganisms from the rearing environment. These 

microorganisms include bacteria, viruses, and 

protozoans, and form the microbiota of the organism. 

The presence of spoilage and pathogenic bacteria could 

impact the quality and safety of the seafood. 

Bivalve molluscs are gathered from the majority of 

natural growth beds, regardless of pollution levels in 

those waters. Depuration, a technique that reduces the 

high-level toxic metals and high bacteria load in 

shellfish, is not adopted, and they are sold at ambient 

temperatures in the market, this practice promotes the 

growth of mesophilic bacteria like coliforms and human 
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pathogenic bacteria (Hatha et al., 2005). Bivalve is 

commonly sold fresh or dried in local marketplaces at 

the subsistence level of their products in Africa (Ukwo et 

al., 2020). 

Immediately a seafood species dies, spoilage begins 

because their regular defensive mechanisms fail, and a 

chain of events occurs that leads to spoilage. Bacteria, 

chemical action and enzymes all contribute to these 

alterations. The most common cause of seafood 

deterioration is bacteria. There are millions of bacteria 

on the slime surface, the gills, and in the guts of living 

seafood species. These bacteria or enzymes invade the 

flesh of seafood species through the blood vessels, 

directly through the skin, belly cavity lining and the gills. 

Bacteria thrive and grow in the flesh, creating substances 

that cause "fishy" flavours and odours, as well as 

discolourations typical with spoilt seafood (Singh et al., 

2011). Their enzymes continue to act, digesting or 

breaking down the flesh. This softens the flesh and 

reduces its quality. These enzymes also increase the rate 

of spoilage by providing more nutrients for bacteria to 

feed on. Oxygen from the air can oxidize unsaturated oils 

present in seafood, resulting in rancidity, off-flavours, 

and off-odours (Prabhakar et al., 2020).  

Various methods and technologies used to assess 

microbial diversity, including pathogens and spoilage 

bacteria in fish, have been described (Parlapani, 2021). 

Odeyemi et al. (2021) summarized the factors 

influencing microbial diversity in crustaceans. The use of 

biofloc technology and neutralized oxidized water at 

both pre-harvest and post-harvest levels to preserve the 

quality and shelf-life of crustaceans such as shrimps and 

prawns was also highlighted (Odeyemi et al., 2021). 

Some seafood purification procedures used after 

harvesting to reduce microbial burden have been studied 

and they include ozone treatment, phage treatment, high-

pressure processing, irradiation (Ronholm et al., 2016), 

aerosolisation and ozonation (Sullivan et al., 2020), 

modified atmosphere packaging (Sørensen et al., 2020), 

dielectric barrier discharges (Albertos et al., 2019), 

hyperbaric storage (Fidalgo et al., 2021), pulsed electric 

field (Nowosad et al., 2021), sous vide (Cropotova et al., 

2019), cold plasma (De Souza Silva et al., 2019). 

However, none of these studies included or discussed the 

microbial diversity and shelf-life of bivalve molluscs. 

This review, therefore, focused on the microbial 

diversity and shelf-life of shellfish and the use of 

innovative technologies for preservation, monitoring and 

shelf-life extension. In the first section of this review, the 

storage conditions and microbial diversity of the most 

widely consumed bivalves (mussels and oysters) were 

briefly discussed. The second section of the review 

focused on the innovative technologies for preservation, 

monitoring and shelf-life extension of shellfish. 

 

2. Microbial diversity of oysters 

Oysters are a group of rough-shelled water bivalve 

molluscs that in 2018 accounted for over 33% of 

aquaculture production, making them one of the largest 

farmed seafood both in quantity and value (Wijsman et 

al., 2019; Botta et al., 2020; Parlapani et al., 2020). 

Oysters are members of the family Ostreidae, and 

commercially valuable species mainly belong to the 

genera Ostrea, Crassostrea, and Saccostrea (Vilanova, 

2014).  

Oysters are filter feeders and commonly consumed 

raw, thus, the food safety risks associated with them are 

of increasing interest (Araújo et al., 2019). Culture 

environment contributes to sources of microbial 

contamination of seafood and this should be well 

considered (Chen et al., 2019). The normal microbiota of 

oysters consists of many phyla representatives, including 

Firmicutes, Proteobacteria, Cyanobacteria, 

Spirochaetes, Planctomycetes, Verrucomicrobia, 

Fusobacteria, Tenericutes, and Bacteroidetes. Others 

include a wide diversity of bacterial genera such as 

Lactococcus, Lactobacillus, Enterobacter, 

Pseudomonas, Acinetobacter, Vibrio, Photobacterium, 

Moraxella, Aeromonas, Micrococcus, and Bacillus 

(Clerissi et al., 2020). Yu et al. (2021) reported that 

Lactococcus, Vibrio, Shewanella, Clostridium, 

Mycoplasma, Acinetobacter, and Aeromonas were the 

most prevalent genera in pacific oysters. The microbial 

diversity of oysters depends on different factors such as 

the growing environment, temperature, and storage 

conditions (Chen et al., 2019). Bacterial communities in 

oysters change after harvest, especially during 

refrigeration (Wang et al., 2014). Prapaiwong et al. 

(2009) found that the total aerobic bacteria count was 

over 107 CFU/g in autumn after one week of storage at 

4°C. According to Scanes et al. (2021), oysters are 

vulnerable to climate change resulting in different 

microbial diversity. Moreover, elevated temperatures and 

CO2 can reduce the immunity of oysters making them 

susceptible to infection. Wang et al. (2014) established 

that the highest bacterial diversity in oysters appeared in 

autumn and the bacterial diversity in gills was higher 

than that in digestive glands and other tissues. A higher 

bacterial load in oysters is responsible for spoilage and, 

hence, the unacceptable quality, which results in a visible 

liquefied appearance (Chen et al., 2019).  

Early studies characterising the microbial 

populations present in oysters by culture-dependent 

methods revealed the dominance of Vibrio and 

Pseudomonas spp. (Cao et al., 2009; Fernandez-Piquer et 
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al., 2012). However, more recent investigations on the 

microbial profiles of oysters using molecular techniques 

such as denaturing gradient gel electrophoresis (DGGE) 

and next-generation sequencing have revealed diverse 

bacterial species including spoilage and pathogenic 

bacteria (Table 1).  

Important spoilage bacteria in oysters include 

Pseudoalteromonas and Vibrio (Madigan et al., 2014). 

However, some of the bacterial genera represented in 

oysters may also include pathogens that are natural 

inhabitants in cultured water such as Vibrio 

parahaemolyticus and Vibrio vulnificus, whereas other 

species such as Vibrio cholerae, Salmonella, Escherichia 

coli, Shigella, Campylobacter fasci, and Yersinia 

enterocolitica are associated with faecal contamination. 

These pathogenic bacteria represent a public health risk 

after oyster consumption, but they can also cause the 

mortality of farmed oysters (Horodesky et al., 2020). 

 

3. Microbial diversity of mussels 

Mussels refer to numerous bivalve mollusc species 

inhabiting both marine (Mytilidae family) and freshwater 

(Unionidae family) habitats. Commercially important 

mussels are predominantly marine and include blue 

(Mytilus edilus), Mediterranean (M. galloprovincialis), 

green (Perna viridis), Chilean (M. chilensis), South 

American rock (P. perna) and green-lipped (P. 

canaliculus) mussels (Duncan, 2003). Similar to other 

seafood products, global production of mussels by 

aquaculture has increased significantly over the last 70 

years reaching 2 million tonnes in 2016, with a trade 

value of 3.8 billion USD (FAO, 2019).  

Mussels are considered highly nutritious and a rich 

source of polyunsaturated fatty acids, proteins, minerals, 

and vitamins (Cherifi et al., 2018; López et al., 2018; 

Khan and Liu, 2019). Beyond their traditional role in the 

diet, mussels are important actors in aquatic ecosystems. 

Mussels purify water by filtering out particulate matter, 

which then serves as a source of nutrients for other 

organisms (van der Schatte Olivier et al., 2020). Mussels 

also contribute to nutrient cycling and enrich biodiversity 

by acting as a habitat for other organisms. They are also 

used as bio-monitors for environmental contaminants 

such as microplastics (Catarino et al., 2018; Vaughn, 

2018; Weingarten et al., 2019). 

Mussels are highly perishable with a shelf-life of 

only a few days (Odeyemi et al., 2018; Tosun et al., 

2018; Xin et al., 2021). Mussels are lightly cooked 

before consumption and coupled with increasing 

consumer demand for fresher and more minimally 

processed seafood with preserved nutritional content, 

there is increasing interest in unravelling the microbial 

community associated with mussels (Bongiorno et al., 

2018; Jeon et al., 2020). It has been suggested that local 

sources such as water and sediment make a significant 

contribution to the microbiota of mussels (Mathai et al., 

2020). As filter feeders, mussels can accumulate 

microorganisms from their environment. In addition, 

improper practices during processing can introduce both 

spoilage and pathogenic microorganisms (Odeyemi et 

al., 2019).  

Some studies examining the microbial diversity of 

mussels are summarised in Table 2. There is scarce 

information about the natural microbiota of mussels, as 

most studies focus on spoilage or pathogenic bacteria 

(Odeyemi et al., 2019). The gut microbiome of M. 

chilensis was dominated by species of Vibrio, 

Psychrilyobacter, Mycoplasma, and Psychromonas 

(Santibañez et al., 2022). Utermann et al. (2018) 

Oyster Bacterial communities Reference 

Pacific oyster 
(Crassostrea gigas) 

Proteobacteria, Actinobacteria, Bacteroidetes, 

Fusobacteria, Acidobateria, Firmicutes, Nitrospirae, 

Verrucomicrobia 
Wang et al. (2014) 

Pacific oysters 
(Crassostrea gigas) 

Prosthecomicrobium, Mycoplasma, Helicobacter, 

Terasakiella, Vibrio, Arcobacter, Pseudoalteromonas 
Madigan et al. (2014) 

Pacific oysters 
(Crassostrea gigas) 

Vibrio, Shewanella, Pseudoalteromonas Rong et al. (2018) 

Pacific oysters 
(Crassostrea gigas) 

Borrelia, Colwellia, Arcobacter, Sphingomonas Chen et al. (2019) 

Sydney rock oysters 
(Saccostrea glomerata) 

Mycoplasma, Spirochaeta, Haloplasma, 

Pseudoalteromonas, Vibrio, Colwellia 
Madigan et al. (2014) 

Eastern oysters 
(Crassostrea virginica) 

Marinifilum, Arcobacter, Spirochaeta, Sphingomonas, 

Bradyrhizobium, Caulobacter, Pelomonas, Psychrobacter, 

Pseudomonas, Bryobacter 
Chen et al. (2019) 

Cortez oyster 
(Crassostrea corteziensis) and 
Kumamoto oyster (Crassostrea sikamea) 

Vibrionaceae, Bacillaceae, Brucellaceae, 

Micrococcaceae, Pseudoalteromonaceae, 

Rhodobactereceae, Shewanellaceae and 

Staphylococcaceae 

Luis-Villaseñor et al. 

(2018) 

Table 1. Microbial diversity of oysters 
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investigated the microbial diversity associated with 

farmed Mytilus spp. from the Baltic Sea. Predominant 

bacteria orders identified included Pseudomonadeles, 

Alteromonadales, Vibrionales, and Actinomycetales 

while predominant fungal orders were Eurotiales and 

Mucorales. Vezzulli et al. (2018) reported the dominance 

of Vibrio and Pseudoalteromonas in the haemolymph of 

farmed Mytilus galloprovincialis.  

Spoilage organisms associated with mussels have 

been reported to include Shewanella, Acidaminococcus, 

Psychromonas, and Acinetobacter (Odeyemi et al., 

2019). These studies confirmed that the composition of 

spoilage microbiota is influenced by the environment in 

which the mussels are caught, pre-packaging processes 

like depuration and storage conditions, including 

atmosphere and temperature (Odeyemi et al., 2018; 

Odeyemi et al., 2019). 

There have been several reports of the presence of 

bacterial and viral pathogens in mussels. Viruses 

including Hepatitis A, Hepatitis E and norovirus have 

been identified at all levels of the supply chain (Erol et 

al., 2016; López-Cabo et al., 2020; O’Hara et al., 2018). 

Bacterial pathogens such as Clostridium difficile 

(Pasquale et al., 2012), Vibrio spp. (Lamon et al., 2019; 

Lorenzoni et al., 2021), and Salmonella (Lamon et al., 

2020) have also been observed in mussels. However, 

more studies on the microbial ecology of mussels, 

particularly those utilising next-generation sequencing 

techniques to determine the non-culturable community 

are required. 

 

4. Preservation, monitoring and shelf-life extension: 

use of innovative and emerging technologies 

Seafood spoilage is a complex process involving 

sensorial, chemical, and biological changes, which begin 

within hours of being harvested due to the activity of 

indigenous and microbial enzymes (Dalgaard, 2003; 

Ghaly et al., 2010; Wang et al., 2019). Altered sensory 

properties include physical damage, colour change in 

gills and eyes, and the softness of muscle and smell. 

Seafood spoilage is an important sustainability issue as it 

has been estimated that between harvest and 

consumption, almost 27% of fish is lost, resulting in 

subsequent loss of income and food availability 

(Gustavvon, 2011).  

Seafood is highly susceptible to spoilage because of 

intrinsic factors including high nutrient (protein and 

polyunsaturated fatty acids) and moisture content, aw > 

0.998 and neutral pH. These conditions provide an 

optimal growth environment for a wide range of 

microbial species. There is a need to assure consumers of 

the safety and quality of seafood products. Seafood is 

often traded over long distances, therefore, appropriate 

preservative strategies must be undertaken to guarantee 

product quality and safety. This has necessitated the use 

of novel packaging technologies to preserve seafood 

(Gokoglu, 2020). In addition, bivalve molluscs are 

increasingly recognised as vectors in the transmission of 

Mussels Bacterial communities Reference 

Zebra mussels 
(Dreissena polymorpha) 

Aeromonas, Microbacteriacece, Midichloriaceae, 

Enterobacteriaceae, Mycoplasmataceae, Arcobacter, Bacteroides, 

Chitinibacter, Deefgea, Vogesella, Enterobacter, Methyloglobulus, 
Acinetobacter, Cutibacterium, Pseudomonas, Pseudorhodobacter, 

Dechloromonas, Shewanella, Chryseobacterium, Cloacibacterium, 
Arenimonas, Thermomonas 

Mathai et al. 

(2020) 

Blue mussels 
(Mytilus edulis) 

Flavobacteriales, Fusobacteriales, Pirellulales, Rhodobacterales, 

Microtrichales, Campylobacterales, Bacteroidales, Vibrionales, 

Alteromonadales 
Li et al. (2020) 

Brachidontes 
mussels 

Proteobacteria, Firmicutes, Tenericutes, Alphaproteobacteria, 

Betaproteobacteria, Clostridia, Clostridia, Epsilonproteobacteria, 

Gammaproteobacteria, Mollicutes, Saprospirae, Burkholderiales, 

Campylobacterales, Marinicellales, Mycoplasmatales, 

Oceanospirillales, Rhizobiales, Rhodobacterales, 

Sphingomonadales 

Cleary et al. 

(2015) 

Mediterranean mussel (Mytilus 

galloprovincialis) 

Ruegeria, Desulfovibrio, Microbulbifer, Pseudomonas, 

Spongiibacter, Acinetobacter, Vibrio, Escherichia, Microcella, 

Propionigenium 

Cappello et al. 

(2015) 

Cyclonaias asperata, Fusconaia 

cerina, 
Lampsilis ornata, Obovaria unicolor 

Clostridium, Methylocystis, Romboutsia, Flavobacterium, 

Staphylococcus, Streptococcus, Pseudomonas, Corynebacterium, 

Bradyrhizobium, Sediminibacterium 

Weingarten et 

al. (2019) 

Chilean mussel 
(Mytilus chilensis) 

Vibrio, Psychrilyobacter, Mycoplasma, Psychromonas 
Santibañez et al. 

(2022) 

Table 2. Microbial diversity of mussels 
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viral and bacterial foodborne diseases, further 

emphasising the need for control measures to minimise 

the growth of undesirable microorganisms in seafood 

(López Cabo et al., 2020). 

The dynamics of environmental conditions such as 

the water column, temperature, and growth stages can 

cause variations in the microbiota of oysters. To extend 

the shelf-life of seafood, more stringent thermal 

processes, including glazing, canning, and freezing have 

been used (Losito et al., 2018; Tosun et al., 2018). Under 

suitable conditions, harvested oysters can survive for 

weeks if appropriately handled and stored. However, 

super-chilled storage extended the shelf-life of ozonated 

oysters by nine days (López et al., 2018). Other studies 

have investigated the effect of different treatments on the 

safety and quality attributes of mussels (Losito et al., 

2018; Tosun et al., 2018; Xin et al., 2021). However, 

there remain significant data gaps. Since the focus of this 

review is on bivalve molluscs, only novel packaging 

technologies used in the seafood industry are briefly 

discussed below. 

4.1. Modified atmosphere packaging 

Modified atmosphere packaging (MAP) is the most 

common packaging system that has been used to 

preserve live, fresh or cooked seafood in the last few 

decades. The effect of MAP alone or in conjunction with 

other hurdle methods to prolong the shelf-life of seafood 

has been studied (Lekjing and Venkatachalam, 2018; 

Gonçalves and Santos, 2019; Sørensen et al., 2020). 

Lekjing and Venkatachalam (2018) reported that 75% 

CO2 and 25% N2 in MAP was found to be the optimum 

condition for pasteurized oyster meat compared with 

75% CO2 and 25% N2 stored at 4°C. Gonçalves and 

Santos (2019) demonstrated that adding a pre-treatment 

stage with cold ozonated water to the fresh shrimp 

processing packed in MAP (100% CO2) could prolong 

the shelf-life by up to 24 days compared with chlorinated 

water or traditional practice. A combination of MAP 

(40% CO2 and 60% N2) and super chilling storage could 

extend the shelf-life of Atlantic cod above 32 days 

(Sørensen et al., 2020). MAP has also been used for the 

preservation of shrimp (Kimbuathong et al., 2020; 

Shiekh et al., 2020). Melanosis of white shrimp 

(Litopenaeus vannamei) may be avoided during storage 

when it is packed in high CO2 60–80% MAP. Microbial 

growth in the product was inhibited by the high CO2 

concentration in the packaging as a result, 

trimethylamine formation during storage could be 

prevented (Kimbuathong et al., 2020). The combination 

of interaction between pulse electric field, extract of 

chamuang (Garcinia cowa) and MAP gives hurdles for 

microorganisms to grow in the shrimp during storage and 

subsequently, melanosis could be prevented effectively 

(Shiekh et al., 2020). This synergistic combination 

delayed the oxidation of fatty acids and inhibited 

microbial growth during storage. Therefore, the quality 

of the shrimp can be maintained. Depuration is a 

bacterial load reduction technique where molluscs are 

kept in potable water, which has been treated with ozone, 

chlorine, or UV radiation for a period of a few hours 

before they are consumed. A study on live mussels 

packed in MAP (80% O2 and 20% N2) showed that 

adding a depuration step prior to packaging could 

eliminate spoilage bacteria like Shewanella and 

Acidaminococcus during storage (Odeyemi et al., 2019). 

The depuration was done for 8 h in a tank fixed with an 

aerator. In conclusion, the combination of MAP and 

additional hurdles technology prior to or post package 

could be an alternative solution to extend the shelf-life 

and preserve the quality of seafood including shellfish. 

4.2. High-pressure processing, time-temperature 

indicators and emerging technologies 

This is a non-thermal cold pasteurization technology 

used for the long-term preservation of the freshness and 

quality of seafood by reducing undesirable sensory 

changes and retaining its the high-nutritional value 

(Cartagena et al., 2020; Cepero-Betancourt et al., 2020). 

In a recent study by Cepero-Betancourt et al. (2020), it 

was observed that HPP improved the degree of 

hydrolysis (DH) of protein digestibility in abalone 

without negatively affecting the nutritional values. 

Similarly, Li et al. (2021) observed that the DH of clam 

(Aloididae aloidi) was improved using the combination 

of heat-ultrasound pre-treatment while only heat 

treatment improved the flavour of the shellfish. 

Temperature fluctuation during the cold chain impacts 

the quality of seafood due to the possibility of microbial 

growth during elevated temperatures. To help solve this 

problem, time-temperature indicators (TTIs) have been 

developed with at least twelve TTIs currently available 

for monitoring seafood products in the last decade. These 

indicators are effectively used to monitor the real-time 

history of storage temperature thereby preventing food 

wastage and improving food safety (Gao et al., 2020). 

Recently, there has been the emergence of new 

technologies that help in preserving seafood quality and 

shelf-life extension. For example, Alamdari et al. (2021) 

reported the development of a low-cost, paper-based, pH

-sensitive (colorimetric) meat spoilage detector that was 

also used to monitor the spoilage of fish. This technology 

could also be used to monitor the spoilage of shellfish. 

4.3 Dielectric barrier discharges  

Dielectric barrier discharges (DBD) is one of the 

electrical discharges used to generate cold plasma (CP). 
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According to Choi et al. (2020), CP is useful for heat-

sensitive products, prevents contamination, is non-toxic, 

and reduces chemical agents. Applying DBD plasma 

treatment conditions of 70 kV or 80 kV for 5 mins of 

treatment time, Albertos et al. (2019) showed that the 

technology significantly reduced the spoilage of fresh 

herring during storage at 4°C. The same technology was 

also used with oysters and results showed that it is 

effective in reducing human norovirus (HuNoV) GII.4 

infectivity in fresh oysters (Choi et al., 2020). One of the 

advantages of DBD treatment is that post-process 

contamination can be avoided since the treatment can be 

applied inside a sealed package (Albertos et al., 2019). 

4.4 Hyperbaric storage 

Hyperbaric storage (HS) consists of preserving foods 

under moderate pressure (up to ~ 100 MPa), which leads 

to longer shelf-life and equal/better quality compared to 

present-day commercial refrigeration (Fidalgo et al., 

2021). Using hyperbaric cold storage at 50 MPa, Otero et 

al. (2019) found that microbial counts did not increase in 

Atlantic mackerel fillets stored after 12 days of storage at 

5°C. The level of pressure needed to effectively control 

microbial growth depends on the storage temperature. 

For example, Otero et al. (2019) showed that a minimum 

pressure of 50 MPa was needed to prevent microbial 

growth in razor clams (Ensis directus) stored at 5°C, 

while a minimum of 75 MPa was required at 20°C. HS 

technology was able to extend the microbial shelf-life of 

the razor clams to, at least, twice that achieved in 

conventional refrigeration (Otero et al., 2019). 

4.5 Aerosolisation and ozonation 

Aerosolisation involves the use of dispersion of a 

liquid phase into the air in the form of a fine mist and is 

usually used for sanitary purposes, especially for 

respiratory medical treatments (Sullivan et al., 2020). 

According to Sullivan et al. (2020), this technology can 

be applied in combination with natural antimicrobial 

materials to seafood to deliver antimicrobial coating and 

enhance the microbiological quality shelf-life extension 

of these products. The authors obtained promising results 

with hake fillets aerosolised with chitosan (CS), chitosan 

nanoparticles (CS NP) or commercially available 

carnosolic acid nano-solubilisate (CASB) antimicrobial 

coating solutions since shelf-life was significantly 

enhanced in comparison to control-treated hake fillets. 

The ozone molecule is formed by three oxygen atoms 

and the arrangement of its unpaired electrons with an 

oxygen nucleus at its centre provides it with a strong 

reactivity (Pandiselvam et al., 2019). Ozone is an 

attractive alternative preservative that the food industry 

needs due to its properties such as quick decomposition 

and little residual effect during food preservation 

(Pandiselvam et al., 2019). Using ozone as a pre-

treatment to modified atmosphere packaging, Gonçalves 

and Santos (2019) showed that the shelf-life of whole 

chilled Pacific white shrimp increased more than twice. 

4.6 Irradiation 

Food irradiation is a new technology that has the 

potential to enhance the safety and shelf-life of a wide 

range of food products. Irradiation has various distinct 

advantages including the immediate inactivation of 

microbes in frozen foods (Ronholm et al., 2016). 

Gamma irradiation and, lately, X-rays are becoming 

preferred alternatives to heat treatment for eradicating 

harmful bacteria like vibrios in live oysters (Mahmoud, 

2009). 

On live oysters, doses of gamma irradiation ranging 

from 0.5 to 3.0 kGy have been studied, with reports 

showing that the greatest dose of 3.0 kGy did not inhibit 

the oysters or change their sensory qualities. Although, 

on the administration of dosage levels as low as 1.0 kGy, 

6-log V. parahaemolyticus decreases were reported 

(Jakabi et al., 2003). X-ray treatments on V. 

parahaemolyticus ready-to-eat shrimp products 

inoculated in the lab resulted in a 6-log reduction in 

CFUs at 3 kGy. To get a 6-log drop in V. vulnificus in 

oysters, it took 3.0 kGy for whole shell oysters and 1.0 

kGy for half shell oysters (Mahmoud, 2009). 

4.7 Phage treatment 

The V. parahaemolyticus phage VPp1a and the 

Siphoviridae phage pVp-1 (Jun et al., 2014) have both 

shown promise in controlling V. parahaemolyticus 

populations in raw oysters (Peng et al., 2013). While 

depuration is particularly successful in reducing coliform 

levels, it is not effective against vibrios except if it is 

done at a low temperature for several days (Phuvasate et 

al., 2012). On the other hand, in the presence of the 

phage VPp1a, depuration reduced the concentration of V. 

parahaemolyticus in oysters by 2.35–2.76 log CFU/g 

over a period of 36-hour at 16°C (Rong et al., 2014).  

Guenther et al. (2009) investigated the efficacy of 

the phage pVp-1 in eradicating V. parahaemolyticus 

infection when used directly and as a bath immersion on 

contaminated oyster meat. Treatment by bath immersion 

reduced counts of V. parahaemolyticus from 8.9×106 

CFU/g to 14 CFU/g after 72 hours, while direct phage 

application to contaminated oyster meat almost 

eliminated contaminants within 12 hours at 18°C with 

only 1.9 CFU/g in the treated samples and 1.4×106 CFU/

g in the control (Jun et al., 2014). When applied to in-

shell oysters, however, the wide and uneven surface area 

reduces contact time between bacterial targets and phage 

particles, posing multiple problems for phage treatment 
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(Guenther et al., 2009). 

4.8 Pulsed electric field 

Pulsed electric field (PEF) processing is a non-

thermal technique for preserving foods. PEF is mostly 

utilized for microbial inactivation in addition to 

extraction, drying, and other mass transfer operations. 

PEF technology works by applying short pulses of high 

electrical currents with a duration of microseconds to 

milliseconds and an intensity of 10–80 kV/cm to 

suppress microbial proliferation (Nowosad et al., 2021). 

PEF method of processing can be utilized in preserving 

the physicochemical features of the finished product 

while also achieving desired organoleptic parameters and 

nutritional and vitamin content (Pourzaki and Mirzaee, 

2008). Kontominas et al. (2021) reported that treatment 

by PEF can make the flesh of fish more porous, enhance 

water retention capacity, and be utilized as a fish drying 

pre-treatment. These authors, however, found no 

enhancement in the softness of shellfish gastropod and 

mollusc goods. This makes it a very good preservation 

technique for shellfish which are exoskeleton-bearing 

aquatic organisms. 

4.9 Sous vide 

Sous vide cooking is a new cooking method that 

involves cooking foods in vacuum pouches at specific 

temperatures while ensuring even heat dispersion. Wan 

et al. (2019) noted that the sous vide method of cooking 

might be employed as a healthy option because it is 

effective in preserving the quality of seafood. However, 

careful monitoring of operational technological 

parameters is essential to protect nutritional and sensory 

quality during the thermal processing of seafood. In 

seafood items, both cooking time and temperature have 

been demonstrated to impact lipid oxidation (Cropotova 

et al., 2019). Furthermore, greater temperatures cause a 

variety of metabolic events, protein aggregations, and 

forms in the muscles of seafood, all of which alter the 

tissue gaps. Vacuum pre-treatment, on the other hand, 

can be used to isolate oxygen and, thus, avoid metabolic 

reactions that require oxygen, as well as to decrease lipid 

damage during the heating process (Wan et al., 2019). 

According to Bongiorno et al. (2018), sous vide 

processing of fresh Mytilus galloprovincialis mussels 

was found to preserve product quality while also 

extending shelf-life and improving product safety. The 

mesophiles had a population of > 5 log CFU/g, total 

volatile basic nitrogen was less than 35 mg/100 g, and 

the mussels had scores of less than 7. Mussels cooked 

traditionally (90°C for 10 mins) had a shelf-life of 

around 14 days, whereas mussels that are sous vide 

cooked and cooled had a shelf-life of about 21 days, with 

a shelf-life of about 30 days when brine was added, 

corresponding to the parameters (85°C for 10 mins) used 

by Bongiorno et al. (2018). 

To preserve the quality and safety of seafood 

products, sous vide is usually used in combination with 

other processing techniques like different packaging 

technologies. It is possible to store sous vide cooked 

marine species in modified atmosphere packaging to 

achieve a longer shelf-life and lower temperatures for 

storage (DeWitt and Oliveira, 2016). 

4.10  Cold plasma 

Cold plasma preservation technique is a non-thermal 

technology for food processing which involves utilizing 

energetic, reactive gases in killing bacteria in food 

products. A carrier gas, such as air, oxygen helium or 

nitrogen is used alongside electricity in this versatile 

sanitizing procedure. Antibacterial chemical compounds 

are not required. UV radiation and cold plasma 

ionization process reactive chemical products are the 

primary mechanisms of action (Sunil et al., 2018). 

De Souza Silva et al. (2019) employed an 

atmospheric cold plasma generator with a dielectric 

barrier discharge configuration and phenolic coplanar 

plates, which generates reactive oxygen and nitrogen 

species, UV radiation, and an intense electric field in 

atmospheric air (saturated with nitrogen and oxygen in 

standard concentrations). De Souza Silva et al. (2019) 

demonstrated the effectiveness of cold plasma in 

preserving the quality of white shrimp (Litopenaeus 

vannamei) increasing their shelf-life and delaying the 

process of melanosis in white shrimp. The study found 

that the cold plasma technique improved the shrimp 

samples' physicochemical features such as stabilizing 

pH, increasing water holding capacity, lowering weight 

losses after cooking and reducing colour change during 

storage. Cold plasma, also lowered the microbial burden 

over time, demonstrating the cold plasma technique's 

promising potential in extending the shelf-life of 

shellfish. 

 

5. Conclusion 

Bivalve molluscs have become a major category of 

seafood products and with immense potential for 

improving food security as a source of nourishment and 

income. To meet growing consumer demand, the supply 

chain for these highly perishable products has become 

global. This has focused interest on the microbial 

communities associated with bivalve molluscs, 

particularly spoilage and pathogenic bacteria. The 

accumulation of bacteria, viruses and toxins in bivalves 

means that the microbiota is largely dependent on the 

local environment and that their food safety requires 
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continual monitoring.   

Some genera and species of the microbial 

community present in bivalve molluscs differ due to 

different cultural environments, pre- and post-harvest 

handling, and storage conditions. The spoilage 

prevention measures to be taken will depend on the scale 

of production of the seafood. For example, a commercial 

scale will require the combination of different 

technologies to ensure premium products while 

maintaining the cost of production and maximizing 

profits. The seafood could be produced using a biofloc 

technology which has been stated to reduce spoilage 

bacteria in shrimps. The harvested seafood could be 

treated with neutral electrolysed water to further reduce 

spoilers. At the post-harvest level, the products could be 

packaged and processed using high-pressure processing, 

packaged using MAP while TTIs can then be used to 

monitor the products during transportation. The 

combination of these technologies will help to reduce 

spoilage and waste of seafood including bivalve 

molluscs without compromising quality. However, there 

is a need to study the economic feasibility of combining 

these technologies. 
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