Pomegranate (Punica granatum L.) fruits in the Quranic Hermeneutics and scientific perspectives

Atabik, A., Muqtada, M.R., Suhadi, Irnawati and Rohman, A.

Faculty of Ushuluddin, Institut Agama Islam Negeri Kudus, Central Java Indonesia
Theology Faculty, Institut Agama Islam Negeri Kudus, Central Java, Indonesia
Faculty of Islamic Law, Institut Agama Islam Negeri Kudus, Central Java, Indonesia
Faculty of Pharmacy, Halu Oleo University, Kendari 93232, Southeast Sulawesi, Indonesia
Center of Excellence, Institute for Halal Industry and Systems (IHIS), Universitas Gadjah Mada, Yogyakarta 55281 Indonesia

Abstract

This review highlighted the Quranic hermeneutics and scientific perspective of pomegranate for human health. To accomplish this review article, numerous reputable databases such as Scopus, American Chemical Society, Science Direct, Springer, and Google Scholar related to this review were downloaded and evaluated. Pomegranate is a popular fruit consumed because of its pleasant taste and high nutritional value having some health benefits to human health. In addition, pomegranate (rumman in Arabic) is one of the stated fruits in the Quran. Quranic Hermeneutic with a scientific approach has been a new model used by modern commentators to explore various kinds of sciences presented in the Quranic verses. Qur’an mentions a pomegranate three times. Classic commentators generally interpreted the pomegranate verses as a special fruit and served for the occupants of heaven. In contrast, modern scientific commentators stated that the fruit contains scientific miracles that are very beneficial for human health since this fruit had some phytochemicals reported to have some biological activities including antioxidant and antibacterial activity.

1. Introduction

Pomegranate fruits with the scientific name of Punica granatum L. (belong to the family of Punicaceae) are excellent sources of bioactive compounds mainly polyphenols. This plant is native to central Asia, but currently, it is highly adaptable to a wide range of climatic and soil conditions and is now grown in many different geographical regions including the Mediterranean basin, Asia, and California in the USA. Pomegranate fruit has been used extensively in the folk medicines of many cultures since ancient times including Greek, Ayurvedic, Unani and Egyptian (Reddy, 2018). This fruit is regarded as a ‘super fruit’, which is rich in antioxidants and phytochemicals and is recognized for a myriad of health benefits. Pomegranate fruit is gaining popularity worldwide for its uniqueness, exclusive colour and taste, and associated health benefits (Hegazi et al., 2021).

Pomegranate is a type of tree from the family of Myrtaceae. Pomegranate (rumman) in a scientific term is called Punica granatum (Talbah, 2011). Since thousands of years ago, human beings have enjoyed it both as food and medicine. The fruit is estimated to originate from West Asia and spread to the surrounding areas. Hebron, which is now a part of Israel territories, is well-known for pomegranate which has been planted since the time of the Prophet Moses. Egypt, Ancient Greece, and Rome are civilizations known for harvesting this fruit. Several archaeological findings found the residues of pomegranate plants, such as its seeds and barks around Cyprus, Israel, Iraq, Jordan, Lebanon, Palestine, Syria, and Turkey. It is estimated to have existed since 3,000 years before A.D. (Potts, 2012).

Experts argue that the pomegranate habitat is in Southwest Asia (Middle East) or Northwest Asia (India). However, it has already spread and is well-bred in the Mediterranean area. Then, it crosses over Iran, the Mediterranean Sea (Iraq and Syria), Egypt, Europe, and even flourishes in Southern China and Southeast Asia. This plant is easy to grow in areas with almost all climates and from low to high land. Despite its ignorance, pomegranate can flourish well on dry loose
Pomegranates are becoming more popular with consumers because of their pleasant taste and high nutritional value. Pomegranate fruit is constituted by peel, arils, and seeds in an approximate 50:40:10 ratio, respectively. As in the majority of fruits, the chemical composition of the pomegranate differs according to the climatic conditions, and ripening degree of the fruit at the time of harvest (Guo et al., 2021). The edible part of pomegranate is about 57–85% of the whole fruit, among which fruit juice accounts for 36–63%. The taste of pomegranate is moderately sour and sweet throughout the flavouring improvement by modern cultivation technology. Pomegranate juice is considered a functional food due to some bioactive contents which are beneficial to human health. Pomegranate fruit contains 17 kinds of amino acids and minerals, vitamin C, calcium, iron, phosphorus, retinol, riboflavin, ferulic acid, and other phenolic compounds. Pomegranate seed oil is also a valuable source of bioactive compounds with health-beneficial effects, but it is sensitive to oxidation due to the high content of PUFA. Therefore, the oil was added with pomegranate peel extract or synthetic antioxidants to improve its stability toward oxidation (Dričić et al., 2020). This fruit is suitable for both young and old consumers; for example, pomegranate juice drinks are popular in daily life, and pomegranate extracts also serve as food additives, supplements, and taste corrections (Ge et al., 2021). Pomegranate extract and its polyphenols can be considered cosmeceuticals because both revealed skin protective effects by ameliorating methylglyoxal (MGO)-induced DNA damage through restoring cell adhesion, migration, and wound healing capacity (Guo et al., 2021). The regular consumption of this fruit has been associated with the prevention of gastric damage, cardiovascular disease, type 2 diabetes mellitus, and specific types of cancers, renal illnesses, liver complications, and osteoarthritis (Villa-Ruano et al., 2020). In this review, pomegranate from Quranic and scientific perspectives are described. From a scientific perspective, the antibacterial and antioxidant activities and polyphenols responsible for these activities are highlighted.

2. Methods
This descriptive-analytical paper used a thematic method based on literature review, referring to scientific articles from Tafseer books, reputed journals, book literature, and conference papers. During this study, some databases of Scopus, American Chemical Society, Science Direct, Springer, and Google Scholar covering abstract and full texts are downloaded and evaluated to be used as references during this review. Scientific studies on Pomegranate published in journals were also used as main references. In addition, other sources came from books related to scientific miracles of the Quran compiled by experts in their fields.

3. Pomegranate fruit
Pomegranate (Punica granatum L.), Figure 1, is a fruit plant that can grow up to 5-8 meters in sub-tropical areas to tropical ones, from lowland to below 1000 meters above sea level. It is a shrub or a small tree of 2-5 meters in height (Lansky et al., 2007). Its stem is woody with square twigs, a lot of branches, spikes on its axilla, weak in nature, brown-coloured when unripe, and turns into dirty green post ripe. The pomegranate tree has a single leaf with short stems, located in groups. The leaf sheet takes oval to lancet in shape, taper base, blunt tip, pinnate bones, shiny surface, 1-9 cm in length, 0.5-2.5 cm in width, and green-coloured (Ahmad, 2003).

![Pomegranate Juice and Fruit](image1.png)
![Pomegranate Tree](image2.png)

Figure 1. Pomegranate fruit, pomegranate juice and pomegranate tree.

Pomegranate is a berry fruit with a rounded shape and 5-12 cm in diameter, with various bark colours, such as purplish-green, white, reddish-brown, or blackish purple. The fruit is unique with its red-glazing seeds like crystals. The flower is called Jullanar. It is an antique fruit that has been known since ancient times. Many people gain some virtues and benefits found in it (Ṭayyārah, 2009). The pomegranate tree is a small posture with thin foliage and flatly shaped, having large and beautiful flowers, with a reddish colour, a fleshy shell of which contents are red-coloured cobs. The white flowers which lie in several separate places, one by one serve as a transparent lid. The Persians named this pomegranate Jalnáz, meaning the red fruit with seeds on it (Olivia, 2015).

In Indonesia, pomegranate is well-known by several names, depending on the regions it grows, such as delima (Malay), glima (Acehnese), Glineu Mekah (Gayoneese), dhalima (Maduranese), gangsalan (Javanese), dalima (Sundanese), teliman (Sasaknese), lele kase and rumu (Timor). There are three types of pomegranate scattered over Indonesia, classified by their colours; they are white pomegranate, red pomegranate, and black pomegranate. Of these three types, the most famous is the red one. Pomegranate fruit is a symbol of
prosperity and fertility, which is held in the form of a
ceremony of seven months of pregnancy ritual,
conducted by Javanese people and other tribes in
Indonesia (Olivia, 2015). Meanwhile, for Chinese
people, it is one of the compulsory fruits of welcoming
the Lunar New Year. They believe that many of the
seeds are a symbol of abundant fortunes.

In general, pomegranate is of various types, in terms
of shape, colour, sweetness level, acidity, or its seed’s
shape and colour. The best is the deep red coloured with
thin bark and abundant water content (Talbah, 2011). It
has three flavours, that is, sweet, sour, and blends
between sweet and sour. Each flavour has a diverse
uniqueness. The fruit with a sweet taste has a 7-10% content
of sugar, 81% of water, 0.6% of proteins, and
0.3% of fat. Moreover, sweet pomegranate also contains
fibre of as much as 2% as well as some tannin, inulin,
and citric acid of as much as 1%. It also contains
minerals, mainly iron, phosphorus, sulphur, potassium,
lime, manganese, and vitamin C (Lansky et al., 2007).
Pomegranate with a sour taste comprises less sugar, with
2% of citric acids. This acid content is even higher than
that of oranges. Meanwhile, its seeds cover 9% of
proteins and fat as much as 7%. Its outer bark contains
tannic acids; the material that can restrain bleeding.
Therefore, its outer bark powder which has been dried
can be used as a remedy to ward off diarrhoea and
dysentery. It can also be used to restrain blood discharge in
the digestive tract (Al-Qabbani, 2009).

Today, Quran has not only become the main focus of
merely studying objects and classical interpretations, but
also the attention of various scientific studies, including
scientific and medical fields. An effort to comprehend
the Quran with a scientific and medical approach by
experts is called scientific hermeneutic. This style of
hermeneutic is an attempt to understand the verses of the
Quran containing scientific cues from the perspectives of
modern science. Scientific hermeneutic is also an
interpreter’s striving effort to uncover the relationship
between the verses of kauniyah in the Quran and
scientific discoveries aimed at revealing its scientific
miracles (Rahman, 1986).

4. Pomegranate in Quranic perspective

According to Al-Zahabi, this scientific hermeneutic
seeks to explore the scientific dimension and uncover the
secrets of its miracles related to scientific information
that may not have been known to humankind during the
descent, it becomes evidence of the truth that the Quran
is not a human work, but a revelation of the Creator
instead (Zahabi, 2009). Dealing with this, many
scientists have focused their studies on the Quran by
attempting to put the verses of the Quran into logic and
correlating them with treatments and medicines. Scientists have tried to combine the studies of plants
mentioned in the Quran with medicines. The Quran does
not mention all types of plants in general, just like
modern botanical science does, but all types of plants
mentioned by the Quran are certainly the top organisms
of their respective species. For example, the fig tree (the
fruits of heaven) is the top of the species of *Ficus*
of "Moraceae" types according to botanists, its species
reach around 700 scattered around the world. Likewise,
pomegranate, herbs of 1001 benefit, cure various
diseases, internal and external ones (Ahmad, 2003).

Nowadays, there have been families who have started the ‘no vegetables and fruits’ campaign on their
family menu. Fruits constitute a major part of the
nutrients needed by a human. Besides being consumed as
nutrients and vitamins, certain fruits have medicinal
properties for certain diseases. This is based on
knowledge of religious teachings. This fruit is
pomegranate which is also mentioned several times in
the Qur'an and contains many health benefits. Almost all
parts of pomegranate plants are useful for medical
treatments, starting from the pulp, seeds, flowers, leaves,
fruit skins, and bark, to the roots that can be formulated
into medicine (Al-Najjar, 2006).

The Quran does not mention a type of plant unless it
serves as the top organism of each species. Likewise,
pomegranate, with the Latin name *Punica granatum*, is
a type of fruit that belongs to the berry species.
Pomegranate is a plant species that has been well-known
since ancient Egyptian time, that is, the beginning era of
Egyptian civilization. Ancient people recognized it as
'Arhamanie' derived from the Qibti name called 'Armen'
or 'Rumen' which is derived from the Hebrew name
called 'Rumon'. Then, it is translated into the Arabic
word 'Rumman' (Shehab, 2011).

Pomegranate (*rumman*) is an ancient plant known to
produce many benefits and to provide various virtues.
The Pharaoh Kings of ancient Egyptian used
pomegranates as medicine (Ahmad, 2003). In Islamic
literary treasures, the pomegranate is classified as the
fruit used as medicine for the Prophet. Ibn Qayyim wrote
some of its virtues; the one with a sweet taste is
beneficial to the stomach, throat, chest, and lungs. It can
also smoothen urine, reduce yellow substances in the
liver, overcome diarrhoea, and strengthen organs (Al-
Jauziyah, 2012).

The Qur'an as the greatest miracle for Muslims
comprises verses showing various scientific signs from
modern science perspectives. The hermeneutic of verses
that talk about science is known as *Tafsir Ilmi* (Scientific
Interpretation) (Al-Qaraḍāwī, 1999). According to
Husain al-Zahabi, scientific hermeneutic discusses scientific terms in narrating verses of the Qur'an, seeks to explore its scientific dimensions, and uncovers the secrets of miracles related to scientific information that may not have been known to humans at the time the Qur'an was revealed (Al-Ẓahabī, 1995). Hence, in modern times, this becomes another piece of evidence that the Qur'an is not a human creation, but rather a revelation of God, The Creator.

Muslim scientists have tried to uncover the contents of the Qur'an which leads to scientific discoveries or to keep some of the natural sciences which are not widely known by humans. They scientifically describe those contents in depth. Despite the Qur'an's zahir (visible) characteristics, of which texts briefly talk about this issue, the scientists' commentary can almost be proven by modern sciences (Al-Shirbaṣī, 1962). This argument is based on the fact that all sciences obtained from the Qur'an, after being analyzed accurately, will lead people to think at a certain point that everything said in the Qur'an is all true.

This scientific hermeneutic employed a set of contemporary sciences, such as astronomy, geology, chemistry, biology, medical science, and other scientific tools (Al-Qaradāwī, 1999). Such interpretation with scientific approaches is not intended to justify the truth of scientific findings by the verses of the Qur'an, nor is it to compel the interpretation of the verses of the Qur'an to seemingly conform to the scientific findings. However, this scientific hermeneutic study initially arises from the awareness that the Qur'an is absolute, whilst its interpretation, both from commentary and scientific perspectives, is relative and tentative in nature (Hanafi, 2015).

Scientific hermeneutic have existed since the Abbasid dynasty. At that time, there were attempts made by some scholars to compromise Islamic teachings with translated foreign cultures, as well as pure sciences found among the Muslims (Abderrahman, 1986). Al-Ghazali was one of the figures who was persistent in supporting these interpretive ideas. In his monumental masterpiece, Ihya 'Ulimuddin, he put forward his arguments to prove his stance (Al-Ghazālī, 2000). He said that all kinds of sciences, both preceding and subsequent ones, whether known or not, come from the Qur'an (Musbikin, 2014).

In another work, Jawahir al-Qur'an, Al-Ghazali also discussed his support for scientific hermeneutic. He stated that all sciences are gathered in one among several oceans of Allah's knowledge which has no end. Furthermore, he strengthened his arguments by saying that Allah's deeds are to provide healing and pain, as He told about Prophet Abraham: "And He 'alone' heals me when I am sick." QC. Ash- Shu’ara: 80). Al-Gazali explained that medicine and diseases cannot be discovered except by those who are involved in the medical field (Al-Ghazālī, 2003). Thus, the verse is a signal dealing with medical science.

Besides al-Ghazali, Fakhruddin al-Razi was an expert commentator who tends to comply with scientific hermeneutic (Al-Rāżī, 2012). His monumental work, Mafāthīth al-Ga’ib, is filled with scientific discussions related to philosophy, natural sciences, theology, medicine, astronomy, and so on. Because of presenting the above discussions, this interpretation is known as a philosophical hermeneutic (Shihab, 1994). The same perspective is also carried out by Jauhari Tantawi, in his work, Tafsīr al-Jawahir. His interpretation uncovers scientific theories and scientific reinforcement in every verse he interprets (Goldziher, 1955).

In this modern era, scientific hermeneutic is increasingly popular and used as a reference to study the sciences presented in the Quran. The development of scientific interpretation in the modern era was at least due to the influence of western technology and science (Europe and the United States) on the Arab world and Muslim regions, especially in the second half of the 19th century when most of the Islamic worlds were under the control of European countries (Jansen, 1980). This western hegemony has gradually led to resistance on one hand and on the other hand, advances in modern Arab scholars' thoughts in terms of religious and social sciences.

The development of scientific hermeneutic is also an implication of the change in the modern Muslims’ perspectives on the verses of the Qur'an, especially with the exposure of modern scientific discoveries in the 20th century. For example, the word 'lumus'īn', in the QC al-Zariyat: 47, "We built the universe with "great" might, and We are certainly expanding 'it'". Along with new scientific discoveries, astronomers concluded a scientific theory, stating that nebulae which lie outside the galaxy we live in continue to move away at different speeds, even celestial bodies in one galaxy are moving away from one another (Hanafi, 2015). This shows that the discoveries of modern science can provide new scientific meanings to the verses of the Qur'an.

An expert on scientific miracles, Nadya Tayyara, explained that he finally found out new information from several passages of the Qur'an verses that talk about fruits. This understanding is also a response to the exposure to biological diseases and their treatment mechanisms, and an understanding of the correlation between chronic diseases and immune disorders that can
be cured by these fruits (Tayyara, 2009). This statement was strengthened by Ibn Qayyim al-Jauziyyah, claiming that the fruits mentioned in the Qur'an have efficacies that other fruits don't. All of these fruits can be used to cure certain diseases (Al-Jauziyyah, 2012). In this context, the paper shows the scientific evidence that causes the pomegranate to be a special fruit as mentioned in the Koran. The disclosure of scientific facts means that the Quranic hermeneutic is open to modern science. In interpreting the pomegranate verses must be based on botanical science data.

5. Pomegranate in commentators’ perspectives: a Quranic Hermeneutic

Pomegranate is a fruit mentioned in the Quran. Al-Shafii noted that pomegranate (rumman) is mentioned three times in the Quran; two of which are in the QC Al-An'am (6): verses 99 and 141, and another in the QC Al-Rahman (55): verse 68 (Al-Shafi’i, 2000). Hermeneutical interpretations of these verses were compiled in Table 1.

Al-Alusi mentions the hermeneutic of the shura al-An’am verses; 99 and 141, there is a similar reduction as referring to olive and pomegranate. In both verses, God speaks of the signs of His power for the believers. Which earth is that He created a variety of trees, such as palm trees, olive trees, and pomegranate trees which take similar shapes and colours, despite the difference in taste (Al-Alusi, 1997). Commenting on those verses above, Qatadah stated that the creation of this pomegranate fruit is similar in its shape, partly to some of the others, but different in the fruit it produces, either in terms of its colour, taste, or content. The power of God's creation on the pomegranate can be seen from the origin of its creation. At the initial phase, it is grain, then grows into a tree, and produces the same fruit colour but different taste and smell (Kathir, 2000).

In the Quran chapter Al-Rahman (55) verses 68-69, God said: "In both of them will be [all kinds of] fruit, and date-palms and pomegranates. Then which of your Lord’s favours will you both deny?". In this verse, God particularly mentions that there are kinds of fruits, dates, and pomegranates in heaven. Ibn al-Jauzi mentioned the word 'dates' (nakhl) and 'pomegranates' (rumman) after the word 'fakihah' meaning fruits both are classified as fruits. This is to explain the virtue of both fruits (Al-Jauzi, 2002). Al-Tabari also stated that in the verse, there is a conjunction indicating a particular thing to the general one, mentioning the word 'fruits' followed by the word 'dates' (nakhl) and pomegranates (rumman) (Al-Tabari, 1998). However, the mention of the two words specifically shows the virtue of the two fruits over the others.

Al-Maragi stated that the series in Al-Rahman verses 62 to 77 describe that there is a tree of fruit grown with leafy green in heaven. Inside it there is a clear water spring that sparkles. Meanwhile, the dwellers and angels are leaning back on green pillows and beautiful carpets. The angels who happen to be the dwellers’ servants have never been touched by any human beings nor genies. They can easily pick the fruit up close as the trees are short. Among the various fruits, the only special ones are dates and pomegranates which have been mentioned (Al-Maragi, 1996). Then which of your Lord’s favours will

Table 1. The Quranic Hermeneutics of pomegranate verses

<table>
<thead>
<tr>
<th>Pomegranate verses</th>
<th>Commentators</th>
<th>Quranic Hermeneutic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shura al-An’am</td>
<td>Al-Alusi</td>
<td>There is a similarity between the 3 fruits; palm, olive, and pomegranate. But have a different taste.</td>
</tr>
<tr>
<td>verses 99 and 141</td>
<td>Ibnu Kathir</td>
<td>There is a process similarity between 3 fruits -palm, olive, and pomegranate- from their seed shapes, trees, and fruit colors. However, it has a different taste and smell.</td>
</tr>
<tr>
<td>Shura al-Rahman</td>
<td>Ibn al-Jauzi</td>
<td>palms and pomegranates are called after the word fakihah (fruits) means that both of them have virtues.</td>
</tr>
<tr>
<td>verses 68-69</td>
<td>Al-Tabari</td>
<td>The word fakihah (fruits) relies on the words nakhl (palm) and rumman (pomegranate) giving the meaning that both have an advantage over other fruits.</td>
</tr>
<tr>
<td></td>
<td>Al-Maragi</td>
<td>This verse is related to Qs. Al-Rahman: 62 to 77 series that describes the fruits in heaven which are green and fresh. The ones mentioned are palms and pomegranates.</td>
</tr>
<tr>
<td></td>
<td>Al-Qurtubi</td>
<td>Palms are the staple food of Arabs and pomegranate is the fruit. Both are widely grown because the Arabs need benefits from them.</td>
</tr>
<tr>
<td></td>
<td>Al-Razi</td>
<td>Allah mentioned the palms and pomegranates because they have opposing characteristics. One is sweet, the other is not. One grows in hot places, the other in cold places. One provides nutrition, the other does not.</td>
</tr>
<tr>
<td></td>
<td>Al-Shawkani</td>
<td>Palms and pomegranates are heavenly fruits that have advantages, benefits, and efficacies for the body. Both of them can be found in the Arab region.</td>
</tr>
<tr>
<td></td>
<td>M. Quraish Shihab</td>
<td>The efficacy of pomegranate has been tested empirically. It contains high citric acid that can help reduce the acidity of urine and blood, thereby preventing gout. Pomegranate also contains a sugar content of about 11% which is useful for easier burning and producing energy</td>
</tr>
</tbody>
</table>

© 2022 The Authors. Published by Rynnye Lyan Resources
According to Al-Qurtubi, in this verse, dates, and pomegranates are mentioned after the other fruits as in line with Arabs customs, dates and pomegranates are like wheat. For the Arabs, dates are the main course, while pomegranates are the dessert. Both fruits are mostly planted since the Arabs take benefits from them (Al-Qurtubi, 2014). Whereas, according to Al-Râzî, God mentions the two fruits, pomegranates and dates, because they are opposite each other; one tastes sweet and the other does not. In addition, one is hot and the other is cold; one is as a source of nutrients and the other is not; one grows in hot land and the other is in cold land; one with high trunk and the other with opposite trunk (Al-Râzî, 2012). Whereas, a medieval commentator, Muhammad al-Shawkani, presented several opinions from the interpretation of surah al-Rahman: 68, pomegranate and dates mentioned in the verse belong to heaven's second characteristics mentioned in the QC. al-Rahman: 62. Even though both are classified as fruits, but particularly mentioned because of their abundant benefits compared to other fruits. Both are also plants existing in the land of Arabs. Another opinion stated that pomegranate is a type of fruit that can be used for medication with extraordinary efficacies (Al-Shawkānī, 2014).

A modern Indonesian commentator, M. Quraish Shihab, tends to interpret the verses about pomegranate based on its efficacies which have empirically been examined. In his commentary book, al-Misbah, he explained that its juice contains very high levels of citric acid compared to other types of fruits, and when roasted, it is very helpful in reducing the acidity of urine and blood which in turn can prevent gout on the body. The citric acid contained in pomegranate can also help form some kidney stones. This juice also contains sufficient sugar levels, around 11%, to ease the roasting and produce energy (Shihab, 2002).

6. Polyphenols in pomegranate fruit

Some extraction techniques have been introduced to get a high recovery of polyphenols. Rajha et al. (2019) have compared 5 extraction techniques namely conventional extraction (CE) based on liquid-solid extraction using a water bath, extraction assisted by infrared irradiation (IR), ultrasound-assisted extraction (UAE), extraction using pulsed electric fields (PEF), and extraction using high-voltage electrical discharges (HVED). HVED assisted extraction offered enhanced the recovery of polyphenols by approximately 3 and 1.3 times as compared to the US and PEF-assisted extractions, respectively. The high recovery of polyphenols during extraction of HVED was caused by the ability of HVED technique to damage the microstructure of pomegranate skins strongly, as indicated by the scanning electron microscopy (SEM) study.

With the advance in experimental design applied in the extraction of phytochemicals, response surface methodology (RSM) was used to evaluate the effect of three factors namely (1) condition liquid/solid ratio, (2) extraction time and (3) ethanol percentage on ultrasonic-assisted extraction (UAE) in obtaining the maximum of total polyphenols (TP), total flavonoids (TF) and condensed tannins (CD) from pomegranate peels. The optimum condition was obtained using a liquid/solid ratio of 20, extraction time of 30.94 min and 59.26% of ethanol offered the highest contents of TP, TF and CT simultaneously. The results obtained during the experimental design were in agreement with those with the predicted values (Hayder et al., 2021).

Pomegranate fruit is rich in polyphenol compounds that may potentially reveal some biological activities such as antioxidant, antibacterial and antifungal activities. The main phenolic compounds in pomegranate peel were anthocyanins, phenolic acids, and flavonoids. During storage, some changes in polyphenolic contents may occur. The study on the content changes of polyphenolic compounds of pomegranate peel and arils during storage for 50 days at a temperature of 5°C was undertaken. The change patterns of pomegranate peel and aril were different among different phenolic compounds. The concentrations of the major phenolic compounds detected in arils and peels decreased during storage, except for syringic acid, catechin acid, p-coumaric acid, chlorogenic acid, caffeeic acid, epicatechin, and dihydroquercetin (in arils). In addition, some phenolic compounds were decreased in pomegranate peel except syringic acid, catechin acid, p-coumaric acid, and dihydromyricetin during storage. These changes may relate to enzymatic activities. The information on changes in polyphenolic contents is useful for management during postharvest treatments to maintain the quality of pomegranate fruits (Liu et al., 2021).

Polyphenolics can be divided into two types: extractable (soluble in aqueous–organic solvents) and non-extractable polyphenols (NEPPs, which are not soluble in aqueous–organic solvents (Pérez-Ramírez et al., 2018). The main extractable phenolic compounds were anthocyanins, gallotannins and gallagyl derivatives, while the main non-extractable phenolic compounds include vanillic acid and dihydroxybenzoic acid. Six compounds were then isolated from the EtOAc extracts whose structures were identified as β-sitosterol-3-O-
glycoside (1), β-sitosterol (2), ursolic acid (3), corosolic acid (4), asiatic acid (5) and arjunolic acid (6). Using supercritical extraction CO$_2$: EtOH, punicalagin α-anomer, punicalagin β-anomer and ellagic acid were isolated (Harscoat-Schiavo et al., 2021).

The identified polyphenolic compounds in pomegranate fruit are grouped into (1) ellagitannins (hydrolyzable tannins) such as corilagin, granatin A and B, tellimagrandin, pedunculagin, punicalagin (a unique compound to pomegranate which is found in the seeds, peel, leaves and juice) with the chemical structure in Figure 2; (2) anthocyanins and their derivatives (sugar derivatives of delphinidin, cyanidin and pelargonidin such as delphinidin-3-glucoside, delphinidin-3,5-diglucoside, cyanidin-3-glucoside, cyanidin-3,5-diglucoside, pelargonidin-3-glucoside and pelargonidin-3,5-diglucoside, and punicalin with chemical structures in Figure 3; (3) derivatives of ellagic acid; (4) flavanols such as kaempferol, quercetin and myricetin, flavones; (4) flavan-3-ols such as catechin, epicatechin and epigallocatechin 3-gallate; (5) hydroxybenzoic acids and their derivatives; (6) hydroxycinnamic acids and their derivatives, as compiled in Table 2 (Topalović et al., 2021; Wong et al., 2021).

7. Biological activities of pomegranate polyphenols

Some biological activities on pomegranate polyphenols have been reported including antibacterial and antioxidants (Govindappa et al., 2021). The antibacterial activities and antioxidant activities of pomegranate peel extracts extracted using high pressure and enzymatic assisted extraction have been evaluated. The chemometrics of principal component analyses exhibited that antioxidant activity and phenolic compound content were strongly related to the antimicrobial activity (Alexandre et al., 2019).

Pomegranate is a very special fruit with a lot of efficacies and benefits. It is closely related to the fact that the Quran particularly mentions pomegranate in the QC. Al-Rahman verses 68-69, “In both of them will be [all kinds of] fruit, and date-palms and pomegranates. Then which of your Lord’s favours will you both deny?”. The Quran does not mention a type of vegetation unless it is the top organism of its species. Therefore, modern scientific commentators of the Quran state that the pomegranate conceives scientific miracles, which are very beneficial for human life. These benefits did not only appear in the days when this verse was revealed but also existed in ancient times. Pomegranate has been utilized for treatment in the times of the Pharaoh Kings to treat their people who were infected by certain diseases (Al-Muslih, 2009).
Anthocyanins and their derivative
- Cyanidin-3,5-cafeoyl hexoside
- Cyanidin-3,5-diglucoside
- Cyanidin-3,5-pentoside hexoside
- Cyanidin-3-galactoside
- Cyanidin-3-glucoside
- Delphinidin-3,5-pentoside hexoside
- Delphinidin-3-glucoside
- Delphinidin-cafeoyl
- Delphinidin-dihexoside
- Delphinidin-trihexoside
- Epiafzelechin-cyanidin-dihexoside
- Epiafzelechin-cyanidin-hexoside
- Epiafzelechin-delphinidin-hexoside
- Epicatechin-cyanidin-3,5-dihexoside
- Epicatechin-delphinidin-3,5-dihexoside
- Epicatechin-delphinidin-hexoside
- Epicatechin-pelargonidin-hexoside
- Epigallocatechin-cyanidin-3,5-dihexoside
- Epigallocatechin-delphinidin-3,5-dihexoside
- Epigallocatechin-delphinidin-hexoside
- Pelargonidin-3,5-diglucoside
- Pelargonidin-3,5-pentoside hexoside

Ellagitannins and derivatives of ellagic acid
- Brevifolin carboxylic acid
- Casuarinin
- Ellagic acid
- Ellagic acid (p-coumaroyl) hexoside
- Ellagic acid derivative
- Ellagic acid galloyl hexoside
- Ellagic acid hexoside
- Ellagic acid pentoside 1
- Ellagic acid pentoside 2
- Ellagic acid rhamnoside
- Ellagittannin 1
- Ellagittannin 2
- Ellagittannin 3
- Ellagittannin 4
- Ellagittannin 5
- Ellagittannin 6
- Ellagittannin 7
- Ellagittannin 8
- Ellagittannin 9
- Granatin A
- Lagerstannin A
- Lagerstannin C
- Pedunculagin 1
- Pedunculagin 2
- Pedunculagin 3
- Pedunculagin 4
- Pedunculagin derivative
- Punicalin derivative 1
- Punicalin derivative 2
- Punigluconin 1
- Punigluconin 2

Flavonol glycosides
- Kaempferol hexoside
- Dihydrokaempferol hexoside
- Syringetin hexoside 1
- Syringetin hexoside 2

Flavones
- Apigenin rhamnoside

Flavanols
- Catechin
- Epicatechin
- Procyanidin dimer 1
- Procyanidin dimer 2
- Procyanidin dimer 3
- Procyanidin dimer 4
- Procyanidin dimer 5
- Procyanidin trimer 1
- Procyanidin trimer 2
- Procyanidin trimer 3

Hydroxybenzoic acids and their derivatives
- Gallic acid
- Vanillic acid hexoside
- Monogalloyl hexoside
- Hexahydroxydiphenic acid hexoside
- Digalloyl-hexoside 1
- Digalloyl hexoside 2
- Vanillic acid dihexoside
- Gallagic acid
- Galloyl ester
- Digalloyl hexahydroxydiphenic acid hexoside 1
- Digalloyl-hexahydroxydiphenic acid hexoside 2
- Gallotannin
- Galloyl gallagyl hexoside Gallagyl ester 1 Gallagyl ester 2
- Tri-hexahydroxydiphenic acid hexoside 1
- Tri-hexahydroxydiphenic acid hexoside 2

Hydroxycinnamic acids and their derivatives
- p-coumaric acid hexoside
- 4-p-coumaroylquinic acid
- Caffeic acid hexoside 1
- Caffeic acid hexoside 2
- 3-cafeoylquinic acid
- 5-cafeoylquinic acid 1
- 5-cafeoylquinic acid 2

Table 2. Some phenolic compounds identified in pomegranate fruits (Topalovic et al., 2021).
body, and strengthen memory (Al-Jauziyah, 2012).

In modern alternative medical treatment, all elements of the pomegranate fruit tree are efficacious for treatment, starting from its flesh of fruit, seeds, flowers, leaves, rinds, and barks, to its root, which can serve as medicine. Pomegranate fruit produces anthocyanin, sugar, ascorbic acid, ellagic acid, gallic acid, caffeic acid; catechin, epigallocatechin gallate, and many minerals, especially iron, and amino acid (Jurenka, 2008). Fakhruddin al-Razi in his exegesis stated that sweet pomegranate serves to strain the shaft of male genitals; meanwhile, the sour one can eliminate sexual stimulus. The sweet pomegranate causes thirst, while the sour one relieves jaundice and discontinues vomiting (Al-Rāzī, 2012).

Besides, pomegranate can also cleanse and open the respiratory tract for people suffering from flu. Its juice may also serve as sweet thick syrup which is the most well-preserved acidity. This syrup can be added to any food and medically used to treat various diseases on the mouth and gums (Al-Najjar, 2006). Its antioxidative content is also higher than that in green tea, cranberry juice, and orange juice. The benefits of the fruit which grows a lot in Iran, northern India, and Southeast Asia-including Indonesia-are no longer just a myth nor an advertising campaign. Even more, both red and white pomegranates are equally efficacious. They can serve as herbs to prevent cancer, antidiarrhea, increase or decrease weight, delay skin-ageing, protect the heart and decrease cholesterol levels (Menezes et al., 2006).

Pomegranate’s root and bark comprise ellagitannins, including punicalin and punicalagin; piperidine alkaloids (Jurenka, 2008). Its root bark can be used to eradicate worms because it contains a lot of pelletierene alkaloids. To make such content in high doses is by boiling its root bark in 50 g for every 1 L of water for a quarter hour. This stew is then consumed as many as approximately one glass each morning (Al-Husaini, 2015). This potion can sometimes result in indications of virulence, headache, nausea, and vomiting. To avoid the occurrence of these poisoning symptoms, this root bark should be mixed with other ingredients which can restrain bleeding, such as tannins. Thus, absorption of the solvent materials becomes slower. The root bark also comprises various materials which can restrain bleeding in high doses (Ahmad, 2003).

Meanwhile, pomegranate bark contains phenolic punicalagin, gallic acid, fatty acid; catechin, epigallocatechin gallate (EGCG), quercetin, rutin, flavonol, flavone, flavanone, anthocyanidin. Besides, its outer bark contains tannic acid, the material which can restrain bleeding. Therefore, the dried pomegranate bark powder can serve as a remedy to ward off diarrhoea and dysentery (Al-Futuh, 2006). It can also be used to withstand blood discharge in the digestive tract. Meanwhile, the boiled one also provides the same benefits and can be used to ward off caterpillars or worms, particularly tapeworms. This is because, on its bark, there are pelletierene alkaloid materials. The bark can also benefit people as anti-ageing material, they make use of it to colour their skins along with the tree (Tayyāra, 2009).

Pomegranate is very beneficial for elderly women. Based on a study by Hidaka et al. (2005) it has an estrogenic effect, which is to ward off menopausal disorders and prevent reproductive organ cancer. By drinking a glass of pomegranate juice every day, people approaching menopause will get 100 mL of polyphenol antioxidant compounds. These compounds can paralyze cancer cells and restore artery wall hardening. The phytoestrogens content in pomegranate can reduce menopausal symptoms and strengthen bones.

Pomegranate is a fruit that refreshes the body and strengthens the heart and nerves. It is beneficial to cure people with weak nerves as well as to smoothen the digestive tract. Its juice which is dripped down the nose, either mixed with honey or not, can avoid the occurrence of polyps because it restrains blood vessels (Al-Bagdadi, 1994). The juice is a potion that is nutritious and refreshing, because it contains high enough carbohydrates, and salt, and is rich in vitamins, especially vitamin C. The juice can also exterminate germs with a comparison of 1:60 bacteria (Al-Audat, 1994). The bark, stem, and root of the pomegranate tree comprise no less than 20% of tannins. Pomegranate fruit is an easily hydrolyzed tannin, in the form of punicalagin. Punicalagin is an ellagitannin found only in pomegranate fruit. Punicalagin has isomer structures, that is, 2,3-(S)-Hexahydroxydiphenoyl-4,6-(S)-galagil -D-glucose (Kumari et al., 2016). Its bark, stem, and root contain no less than 20% of tannins. Of the existing tannins are four separate alkaloids; first, pelletierine alkaloid called also punicine; second, isopelletierine alkaloid; third, ethyl pelletierine alkaloid; and fourth, the pseudo-pelletierine alkaloid also called Methylgrantanine (Talbah, 2011). Pomegranate also contains other polyphenol compounds, that is, catechin, and gallolatechin, as well as anthocyanin compounds such as prodelphinidin, delphinidin, cyanidin, and pelargonidin (Mertens-Talcott et al., 2006).

In Western countries, pomegranate usually appears in the fall. Now, food manufacturers add this fruit to chocolate, chewing gum, or made into juice. In 2005, 215 new foods and beverages were recorded containing...
pomegranate in the United States. Pomegranate is a versatile plant. Besides consumption, it is also made as juice for medication. This fruit contains many benefits. In addition to a great number of antioxidants, it helps prevent heart disease and stroke, and the seeds in each pomegranate grain contain fibre which is very beneficial for the body's immunity (Olivia, 2015).

7.1 Antibacterial activities

Antibacterial activities have been described in several studies using in vitro methods such as agar disc diffusion assays and/or minimum inhibitory concentration (MIC). Some extracts of Pomegranate peels extracted by conventional extraction (CE) based on liquid-solid extraction using a water bath, extraction assisted by infrared irradiation (IR), ultrasound-assisted extraction (UAE), extraction using pulsed electric fields (PEF), and extraction using high-voltage electrical discharges (HVED) are evaluated for antibacterial activities using Gram-negative bacteria of Escherichia coli and Gram-positive bacteria of Staphylococcus aureus. The inhibition of polyphenol-rich extracts is assessed using the ELISA technique. Based on HPLC studies, all extract contains high levels of ellagic and gallic acids (polyphenols). All extracts exhibited antibacterial activities with the inhibition efficiency toward S. aureus up to approximately 80% as compared to E. coli (up to approximately 33%) (Raja et al., 2019). Phloretin and coumaric acid present in pomegranate fruit exhibited potent antimicrobial activity against Staphylococcus epidermidis, while punigratane revealed the most substantial antimicrobial effect on Microoccus kristinae (Nazeem et al., 2020).

Giménez-Bastida et al. (2021) have compared the antibacterial activities of different parts of the pomegranate fruit. The pomegranate peel revealed strong antibacterial activities, compared to the other parts (flower, leaf, and stem), against Salmonella enterica, Escherichia coli, Shigella sonnei, Enterococcus faecalis, Staphylococcus aureus and Bacillus subtilis. These antimicrobial activities are primarily attributed to the polyphenolic compounds, including high tannin content, especially punicalagin. The other polyphenolic compounds identified are gallic acid, punicalagin-α, punicalagin-β, catechin, chlorogenic acid, epicatechin, and ellagic acid. However, it is believed that antimicrobial activities not only depend on a single or an individual component but also due to various metabolites.

The antibacterial activity of water extract of black peel pomegranate and silver nanoparticles synthesized by water extract toward strains of gram-positive and gram-negative. Both extract and silver nanoparticles exhibited potent antibacterial activities toward Pseudomonas aeruginosa (Gram-negative) and Staphylococcus aureus (gram-positive), although P. aeruginosa was less sensitive to both samples. The nanoparticles made from water extracts were more effective as bacteriostatic than water extracts with a minimum bacteriostatic concentration of nanoparticles of 40–65 μg/mL. From this result, silver nanoparticles synthesized by water extract of black peel pomegranate can be considered as a high potential agent to combat infectious diseases due to its significant bacteriostatic activity (Khorrami et al., 2020).

7.2 Antioxidant activities

Antioxidant activities of pomegranate fruits and their parts either in vitro or in vivo in animal models have been reported (Akuru et al., 2020). In vitro, the antioxidant activities of pomegranate were evaluated by radical scavenging of DPPH (2,2'-diphenyl-1-pircylylhydrazyl), ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid), FRAP (ferric-reducing antioxidant), metal chelating activity, reducing power assay, β-carotene bleaching assay, ORAC (oxygen radical absorbance capacity assay, NBT (nitroblue tetrazolium chloride) assay, TOSC (total oxyradical scavenging capacity) assay, ferrous ion chelating, superoxide radical scavenging activity and lipid peroxidation inhibitory activity (Smaoui et al., 2019). Polyphenols extracted from pomegranate peel using ultrasound-assisted extraction (UAE) revealed high antioxidant activities using radical scavenging activity of DPPH of 94.91%, due to high content of punicalagin (143.64 mg/g dry matter) as determined by HPLC analysis (Kaderides et al., 2019).

The antioxidant activities of 70% ethanolic extract of pomegranate peel and its fractions (petroleum ether, ethyl acetate, butanol and water) obtained using liquid-liquid extractions have been evaluated by in vitro methods. Butanol and ethyl acetate was the most active fractions as radical scavenger toward DPPH ABTS radicals. In addition, water fraction showed the strongest activity in FRAP and β-carotene bleaching tests (Šavikin et al., 2018).

Some clinical studies have been conducted related to the health benefits of pomegranate juices and extracts. Giménez-Bastida et al. (2021) informed that the most promising effects in clinical studies are related to the improvement of blood pressure. In addition, the activities related to inflammation, cancer, cognitive function, and physical activity are less evident. The evidence on humans during clinical studies remains inconsistent, making it difficult to support most claimed health effects. The difference in clinical study results might be
attributable to design limitations, including insufficient product characterization and inter-individual variability which influence the efficiency of pomegranate polyphenols.

8. Conclusion

Pomegranate is mentioned three times in the Qur’an. Classic commentators have different ways of interpreting it from modern ones who relate it to scientific hermeneutics. The former generally interpreted the verses on pomegranate as a special fruit that is mentioned by the Qur’an besides dates. Meanwhile, the latter stated that pomegranate contains scientific miracles, which are very beneficial for humans’ life since its tree components have medical efficacies, starting from its pulp, seeds, flowers, leaves, rind, bark, to roots which can be formulated into cosmetic and herbal medication. From a scientific perspective, pomegranate fruit and its part contained bioactive compounds, especially polyphenols, having some biological activities which are beneficial to human health.

References

Nazeam, J.A., AL-Shareef, W.A., Helmy, M.W. and El-

