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Abstract 

Tuna viscera as a common waste product from the tuna processing industry contributes to 

environmental pollution. The effects were determined of peptide fractions and amino acids 

on the antioxidant properties of protein hydrolysate from tuna viscera. We converted this 

waste into protein hydrolysate, a high added-value product, using autolysis. Tuna protein 

hydrolysate was fractionated by ultrafiltration into four fractions (>10 kDa, 5–10 kDa, 1–5 

kDa and <1 kDa) and each was examined for its antioxidant properties (DPPH, ABTS, 

FRAP and metal chelating) and amino acids composition. The MW and amino acids of the 

tuna protein hydrolysate peptide fractions were not directly correlated with DPPH radical 

scavenging activity and metal chelating. The ABTS radical scavenging activity and ferric 

reducing antioxidant power (FRAP) of the 1–5 kDa fraction were higher than for the other 

fractions. The tuna protein hydrolysate peptide fractions contributed to antioxidant activity 

and should be used to their full advantage by the nutritional and food industries. 

1. Introduction 

Thailand is the world's largest producer and exporter 

of tuna products, with most of the fresh and frozen raw 

materials being imported and used for canned tuna 

production. The imported tuna species consist of 

skipjack (67.3%), yellowfin (15.1%), albacore (9.3%), 

and others (5.9%). In 2020, 667,215 tonnes of tuna 

products were exported, with a value of THB 82,773 

billion following an increasing trend (Thai Tuna Industry 

Association, 2020). However, the industry generates a 

large amount of waste during processing. Of the 757,644 

tonnes of frozen whole tuna used as raw material in 2020 

(Thai Tuna Industry Association, 2020), 7–8% was 

viscera and the total amount of waste was 60,611 tonnes 

(Hajihama, 2013). It is imperative to reduce these wastes 

to decrease environmental pollution, and instead use 

them for high added-value products (Saidi et al., 2014). 

Currently, most of the by-products are processed into 

animal feed, but with low value. To address this, efforts 

have been made to convert tuna viscera into alternative 

products, such as fish meal (Hernandez et al., 2004; 

Nguyen et al., 2011), tuna extract and protein 

hydrolysate (Ovissipour et al., 2012; Salwanee et al., 

2013; Klomklao and Benjakul, 2017; Rutchanee et al., 

2018; Taheri and Bakhshizadeh, 2020). 

The production of protein hydrolysate uses 

endogenous enzymes for autolysis (Detkamhaeng et al., 

2016; Ben Maiz et al., 2019) and selected protease (such 

as papain, alcalase, bromelain, pepsin, protamex, and 

flavourzyme) for the enzymatic modification of proteins 

(Barkia et al., 2010; Ben Maiz et al., 2019; Taheri and 

Bakhshizadeh, 2020). Tuna viscera is a good source of 

protease, which breaks down large proteins into smaller 

peptides and free amino acids with high solubility 

(Chalamaiah et al., 2012) Hydrolysis depends on the 

reaction conditions, including enzyme activity, 

temperature, and time (Barkia et al., 2010). The protease 

present in tuna viscera eliminates the need for expensive, 

synthetic enzymes (Nikoo et al., 2021). Protein 

hydrolysate is a natural source of many antioxidants. It 

has strong antioxidant activity against free radicals and 

reactive oxygen species (Qian et al., 2008).  

The amino acid composition differs according to the 

source of raw materials, degree of hydrolysis, and type 

of protease (Sarmadi and Ismail, 2010; Li et al., 2013; 

Memarpoor-Yazdi et al., 2013). Bioactive peptides 

contain 2–20 amino acids (Saidi et al., 2014) and usually 

have a molecular weight <3 kDa (Le Gouic et al., 2018). 

Therefore, protein hydrolysate may need to be reduced to 

these smaller peptide fractions to take full advantage of 

their bioactive properties for nutritional, food, and 

pharmaceutical applications (Vandanjon et al., 2009).  

Ultrafiltration (UF) is a useful technology for the 
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fractionation of peptides based on molecular weight cut-

off (MWCO) sizes, as well as an environmentally 

friendly and cost-effective process (Drioli et al., 2011). 

This research aimed to study the effects of peptide 

fractions and amino acids on the antioxidant properties 

of protein hydrolysate from tuna viscera. 

 

2. Materials and methods     

2.1 Raw materials 

A sample of viscera from Skipjack tuna (Katsuwonus 

pelamis) was acquired from Thai Union Group PCL, 

Samut Sakhon, Thailand, packed in polyester bags, and 

transported on ice within 2 hrs to the Department of 

Fishery Products, Faculty of Fisheries, Kasetsart 

University, Bangkok. Then, the viscera tissue was 

blended and packed in polyester bags (2 kg per bag) and 

stored at -20°C until further experimentation.  

2.2 Extraction of protein hydrolysate 

Extraction of protein hydrolysate followed the 

method described by Detkamhaeng et al. (2016). A 

sample of the blended tuna viscera was autolyzed at 55°

C for 24 hrs, and then temperature was increased to 100°

C for 1 hr to terminate the reaction. The material was 

centrifuged at 10,000×g at 4°C for 30 mins. Samples of 

the supernatant were collected and sterilized in an 

autoclave at 121°C and 15 psi for 15 mins before storing 

until further analysis. 

2.3 Determination of degree of hydrolysis 

The total nitrogen content of the tuna protein 

hydrolysate was analyzed using the Kjeldahl method 

(Nielsen, 2010). The DH of the tuna protein hydrolysate 

was determined method TCA-solubility index as 

described by Rutherfurd (2010) according to the method 

of Tohmadlae et al. (2020) using the formula: 

DH (%) = Total nitrogen in protein hydrolysate × 100 / 

Total nitrogen in material                                                                                                                                                                                                                                   

2.4 Fractionation of peptides using ultrafiltration  

Fractionation of peptides using ultrafiltration (UF) 

followed the method described by Charoenphun et al. 

(2013). Amicon® Stirred Cells and membranes with 

MWCO sizes of 10, 5, and 1 kDa were used, along with 

nitrogen gas and pressure of 50–75 psi. Retentate and 

permeate peptides were analyzed for soluble protein 

content, antioxidant properties, and amino acid 

composition. 

2.5 Soluble protein content analysis 

The soluble protein content was determined using 

the methods of Lowry et al. (1951) and Peterson and 

Johnson (1978), at a spectrophotometric wavelength of 

750 nm. The amount of soluble protein (in mg/mL) was 

calculated from a standard curve of bovine serum 

albumin (BSA). 

2.6 DPPH radical scavenging activity assay 

DPPH radical scavenging activity assay followed the 

method described by Sukkwai et al. (2011), using a 

spectrophotometric wavelength of 517 nm. Trolox was 

used as the positive control at concentrations of 0–60 

µM. The activity of each sample was compared to a 

standard curve and calculated by applying the 

absorbance to the standard equation.  

2.7 ABTS radical scavenging activity assay 

ABTS assay followed the methods of Alemán Pérez 

et al. (2011) and Ketnawa and Liceaga (2017), using a 

spectrophotometric wavelength of 734 nm. Trolox was 

used as the positive control at concentrations of 25–60 

µM. The activity of each sample was compared to a 

standard curve and calculated by applying the 

absorbance to the standard equation.  

2.8 Ferric reducing antioxidant power  assay 

FRAP assay followed the method described by Wu 

et al. (2003), using a spectrophotometric wavelength of 

595 nm. Trolox was used as the positive control at 

concentrations of 0–850 µM. The activity of each sample 

was compared to a standard curve and calculated by 

applying the absorbance to the standard equation. 

2.9 Metal chelating activity assay 

Metal chelating assay followed the method of Boyer 

and McCleary (1987), using a spectrophotometric 

wavelength of 562 nm. EDTA was used as the positive 

control at concentrations of 0–150 µM. The activity of 

each sample was compared to a standard curve and 

calculated by applying the absorbance to the standard 

equation.  

2.10 Amino acid composition  

Samples were hydrolyzed with 6 M HCl at 110°C 

for 24 hrs and analyzed using high-performance liquid 

chromatography (Agilent 1260 Infinity, USA). The 

mobile phase A contained 10 mM of Na2HPO4, 10 mM 

of Na2B4O7 (pH 8.2), and 5 mM of NaN3; the mobile 

phase B contained acetonitrile:methanol:water (45:45:10 

v/v/v). The flow rate was 1.5 mL/min. An injection 

volume of 1 μL was used, and the detector wavelengths 

were set at 230 nm and 450 nm. The derivatization 

reagents were borate buffer, o-phthalaldehyde (OPA), 

and 9-fluorenylmethyl chloroformate (FMOC). 

Determination of amino acids followed the method of the 
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Association of Official Analytical Chemists (AOAC, 

1997). 

2.11 Statistical analysis 

A completely randomized design (CRD) was used 

for the experiments, with three replications. Data were 

presented as mean±standard deviation (SD) values. 

Means were compared using Duncan's multiple range 

test and statistical analysis of variance (ANOVA) at a 

significance level of 95%. 

 

3. Results and discussion  

3.1 Fractionation of peptides 

The degree of hydrolysis of the tuna protein 

hydrolysate was 19.16±0.65%. The protein hydrolysate 

was fractionated using MWCO sizes of 10, 5, and 1 kDa. 

The resulting four peptide fractions (and relative 

proportions) were >10 kDa (56.40±1.20%), 5–10 kDa 

(14.28±1.03%), 1–5 kDa (10.17±0.74%) and <1 kDa 

(19.15±0.52%), as shown in Figure 1. The tuna protein 

hydrolysate had a soluble protein content of 

1,031.66±14.26 mg protein, while the peptide fractions 

of >10 kDa, 5-10 kDa, 1-5 kDa and <1 kDa had protein 

contents of 586.67±19.82, 153.07±6.24, 106.42±0.49 

and 184.98±12.25 mg protein, respectively. The soluble 

protein content of all peptide fractions was significantly 

lower than for tuna protein hydrolysate (p<0.05).  

3.2 DPPH radical scavenging activity 

DPPH radical scavenging capacity assay is a method 

for the analysis of the capacity of primary oxidation 

resistance in the reagent DPPH 2,2-diphenyl-1- 

picrylhydrazyl is radical in the methanol solvent that 

accepts an electron or hydrogen to become a stable free 

radical (Fatiha and Abdelkader, 2019). The DPPH 

radical scavenging activities of the tuna protein 

hydrolysate (60.34±1.34 µmol TE/mg protein) and the 

peptide fractions were not significantly different 

(p≥0.05) as shown in Figure 2. The MW of the tuna 

protein hydrolysate showed some effect on the DPPH 

antioxidant activities as did the protein hydrolysates 

from mackerel (Wu et al., 2003), salmon (Ahn et al., 

2014), cod (Sabeena Farvin et al., 2016), and tuna (Wu 

et al., 2003; Zhang et al., 2019). DPPH free radicals can 

be dissolved only in inorganic media (especially in 

alcohol-based media) and are less sensitive in aqueous 

and organic media. Hydrophobic amino acids have a 

Amino acid  Tuna protein 
hydrolysate 

Fraction 

(mg/100g sample) >10 kDa 5–10 kDa 1–5 kDa <1 kDa 

Aspartic acid* 580.62 330.75 84.15 63.60 109.77 

Alanine** 413.62 236.06 59.99 44.74 79.20 

Arginine* 367.91 208.47 53.63 41.06 70.87 

Cystine* - - - - - 

Glutamic acid* 893.98 512.98 131.09 97.74 169.04 

Glycine* 464.94 266.07 67.63 50.95 87.30 

Histidine* 136.99 79.88 20.05 15.82 24.88 

Hydroxylysine - - - - - 

Hydroxyproline - - - - - 

Isoleucine** 295.78 169.61 43.19 32.39 57.13 

Leucine** 460.01 263.31 66.39 49.86 88.13 

Lysine*, *** 499.08 285.44 73.15 55.22 95.64 

Methionine** - - - - - 

Phenylalanine** 250.73 - - 27.14 - 

Proline** 316.94 173.81 45.37 34.66 58.50 

Serine* 304.20 177.70 44.81 33.86 60.40 

Threonine* 309.83 177.86 44.69 34.00 58.01 

Tryptophan** - - - - - 

Tyrosine* - - - - - 

Valine** 406.83 232.72 59.42 43.96 77.51 

Hydrophilic amino acids 3557.55 2039.15 519.21 392.25 675.90 

Hydrophobic amino acids 2143.91 1075.51 274.37 232.75 360.48 

Essential amino acids 2359.25 1208.82 306.91 258.39 401.30 

Total 5701.46 3114.66 793.58 625.00 1036.38 

Table 1. Amino acid composition of tuna protein hydrolysate and peptide fractions.  

- = not detected 

* Hydrophilic amino acids 

** Hydrophobic amino acids 
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strong effect on DPPH free radicals (Tang et al., 2010). 

The tuna protein hydrolysate showed lower DPPH 

radical scavenging activity because it contained less 

hydrophobic amino acids (alanine, isoleucine, leucine, 

methionine, phenylalanine, proline, and valine), as 

shown in Table 1. 

3.3 ABTS radical scavenging activity  

ABTS assay radical scavenging capacity assay is a 

method for the analysis of the capacity of primary 

oxidation resistance in the reagent 2,2'-Azino-bis (3-

ethylbenzothiazoline-6-sulfonic acid). The diammonium 

salt is a stable radical in an aqueous solution so the 

primary antioxidant acts to stop the reaction chain in the 

reaction as the oxidation acts as an electron donor (Tang 

et al., 2010). The current results showed that the protein 

hydrolysates and peptide 1–5 kDa fraction had the 

significantly highest antioxidant activity (1031. 69±16 . 82 

and 1021.8±13. 85µmol TE/mg protein, respectively) 

compared to the peptide fractions of >10 kDa, 5–10 kDa 

and <1 kDa (978.83±11.25, 970.05±28.34 and 

947.96±22.43 µmol TE/mg protein, respectively). ABTS 

free radicals are more sensitive in aqueous and organic 

media (Tang et al., 2010). The current results showed 

that the MW of the peptides had an effect on the ABTS 

radical scavenging activity. Factors affecting the level of 

ABTS antioxidant activity are the source of the raw 

material, the autolysis process, and the amounts of 

peptides and amino acids. In addition, high MW peptides 

are effective as antioxidants and increase and decrease 

hydrophilic and hydrophobic amino acids, respectively, 

improving the antioxidant effect of ABTS (Tang et al., 

2010). The tuna protein hydrolysate contained 

hydrophobic amino acids (alanine, isoleucine, leucine, 

methionine, phenylalanine, proline, and valine) and 

hydrophilic amino acids (aspartic acid, arginine, glycine, 

lysine, serine, and threonine), as shown in Table 1 that 

contributed to the high antioxidant effect of the ABTS. 

In the current research, the tuna protein hydrolysate and 

the 1–5 peptide fractions had the highest ABTS effect 

but they were not significantly different. Although the 

amount of the 1–5 peptide fraction was low (10%), the 

peptide fractions had a greater effect on ABTS than the 

hydrophilic and hydrophobic amino acids. 

3.4 Ferric reducing antioxidant power  

FRAP assay is used to evaluate the ability of an 

antioxidant to donate an electron to reduce the ferric iron 

)III) to ferrous iron (II). The reducing properties depend 

on the electron donor capacities of the peptides and 

amino acids (Bougatef et al., 2010). The current results, 

shown in Figure 2, indicated that the tuna protein 

hydrolysate and the peptide fraction 1–5 kDa had high 

FRAP values of 2254.50±30.35 and 2251.85±28.03 

µmol TE/mg protein, respectively, that were 

Figure 1. Diagram of fractionation of tuna protein hydrolysate using ultrafiltration (values shown as mean±SD). 

Figure 2. Antioxidant activities of tuna protein hydrolysate 

and peptide fractions. Results are presented as mean±standard 

deviation (n = 3). Values with different superscripts are 

statistically significantly different at p<0.05.  
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significantly (p<0.05) higher than for all the other 

peptide fractions (>10 kDa, 2147.51±27.10; 5–10 kDa, 

2143.71±35.35; and <1 kDa, 1896. 70±84 .28 µmol TE/

mg protein). Other research reported that in cod protein 

hydrolysate, the peptide fractions 3–5 kDa and <3 kDa 

had higher FRAP levels than the larger peptides 

(Sabeena Farvin et al., 2016). In salmon by-product 

hydrolysate, peptides with MW <1 kDa had the highest 

FRAP (Ahn et al., 2014). FRAP is related to the MW of 

peptides (Sabeena Farvin et al., 2016). High amounts of 

low-MW peptides increase the donation of electrons to 

free radicals, thus the termination of the chain reaction 

(Nikoo et al., 2019). Radical scavenging activity as 

measured using FRAP is also associated with 

hydrophobic amino acids (Pownall et al., 2010). In the 

current study, the tuna protein hydrolysate contained 

hydrophobic amino acids (alanine, isoleucine, leucine, 

methionine, phenylalanine, proline, and valine), as 

shown in Table 1 and the protein hydrolysate also had a 

high FRAP. This was similar to reports on tuna dark 

muscle hydrolysate (Saidi et al., 2014) and cod protein 

hydrolysates (Sabeena Farvin et al., 2016).  

3.5 Metal chelating activity 

The metal chelating assay is used to determine the 

ability for oxidation because metal ions are the main 

reaction iron in the form of ferrous (Fe2+) will oxidize 

with oxygen in the air to form a superoxide anion radical 

(O2 -•), which is a free radical initiator that produces 

other free radicals (Torres-Fuentes et al., 2012; Da 

Rocha et al., 2018). Long-chain peptides have higher 

numbers of amino acids than short-chain peptides; thus, 

short-chain peptides cannot form a complex with metals 

and long-chain peptides may have metal chelating 

activity compared to the shorter peptides (Taheri and 

Bakhshizadeh, 2020). Histidine, arginine, and lysine 

affect metal chelating via their carboxyl or amino side 

chains. Histidine has also been shown to have strong 

radical scavenging capacity as a result of metal chelating 

(Wu et al., 2003; Samaranayaka and Li-Chan, 2011; 

Girgih et al., 2013; Taheri and Bakhshizadeh, 2020). 

Tuna protein hydrolysate and peptide fractions contain 

less histidine and consequently may not show any metal 

chelating activity.  

 

4. Conclusion  

This research indicated that the peptide fractions had 

a greater effect on ABTS radical scavenging activity and 

FRAP than the hydrophilic and hydrophobic amino 

acids, while the MW and amino acids of the tuna protein 

hydrolysate did not have significant effects on DPPH and 

metal chelating. Tuna protein hydrolysate and the 1–5 

kDa peptide fraction showed ABTS radical scavenging 

activity and FRAP levels that were higher than all the 

other peptide fractions. Choosing the most appropriate 

peptide fraction can be beneficial in the food industry.  
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